Back to Search Start Over

RGBD object recognition and visual texture classification for indoor semantic mapping

Authors :
Eddy Cizeron
Alexander Gepperth
Sio-Hoi Ieng
Islem Jebari
Rafael Pereira
Guillaume Duceux
Cedric Meyer
Stéphane Bazeille
Jean-Charles Mamanna
Benoit Pothier
Ryad Benosman
Emmanuel Battesti
David Filliat
Lotfi Harrath
Adriana Tapus
Flowing Epigenetic Robots and Systems (Flowers)
Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité d'Informatique et d'Ingénierie des Systèmes (U2IS)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Unité d'Électronique et d'informatique (UEI)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Institut de la Vision
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
gostai
Gostai
Filliat, David
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Proceedings of the 4th International Conference on Technologies for Practical Robot Applications (TePRA), Technologies for Practical Robot Applications (TePRA), 2012 IEEE International Conference on, Technologies for Practical Robot Applications (TePRA), 2012 IEEE International Conference on, Apr 2012, United States. pp.127-132, ⟨10.1109/TePRA.2012.6215666⟩, TePRA
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; We present a mobile robot whose goal is to autonomously explore an unknown indoor environment and to build a semantic map containing high-level information similar to those extracted by humans. This information includes the rooms, their connectivity, the objects they contain and the material of the walls and ground. This robot was developed in order to participate in a French exploration and mapping contest called CAROTTE whose goal is to produce easily interpretable maps of an unknown environment. In particular we present our object detection approach based on a color+depth camera that fuse 3D, color and texture information through a neural network for robust object recognition. We also present the material recognition approach based on machine learning applied to vision. We demonstrate the performances of these modules on image databases and provide examples on the full system working in real environments.

Details

Language :
English
Database :
OpenAIRE
Journal :
Proceedings of the 4th International Conference on Technologies for Practical Robot Applications (TePRA), Technologies for Practical Robot Applications (TePRA), 2012 IEEE International Conference on, Technologies for Practical Robot Applications (TePRA), 2012 IEEE International Conference on, Apr 2012, United States. pp.127-132, ⟨10.1109/TePRA.2012.6215666⟩, TePRA
Accession number :
edsair.doi.dedup.....b8cc6e87cea5c138840790cecf1093aa
Full Text :
https://doi.org/10.1109/TePRA.2012.6215666⟩