Back to Search
Start Over
Remotely Sensed Spatiotemporal Variation in Crude Protein of Shortgrass Steppe Forage
- Source :
- Remote Sensing 14 (4) : 854 (February 2022), INTA Digital (INTA), Instituto Nacional de Tecnología Agropecuaria, instacron:INTA, Remote Sensing; Volume 14; Issue 4; Pages: 854
- Publisher :
- MDPI
-
Abstract
- In the Great Plains of central North America, sustainable livestock production is dependent on matching the timing of forage availability and quality with animal intake demands. Advances in remote sensing technology provide accurate information for forage quantity. However, similar efforts for forage quality are lacking. Crude protein (CP) content is one of the most relevant forage quality determinants of individual animal intake, especially below an 8% threshold for growing animals. In a set of shortgrass steppe paddocks with contrasting botanical composition, we (1) modeled the spatiotemporal variation in field estimates of CP content against seven spectral MODIS bands, and (2) used the model to assess the risk of reaching the 8% CP content threshold during the grazing season for paddocks with light, moderate, or heavy grazing intensities for the last 22 years (2000–2021). Our calibrated model explained up to 69% of the spatiotemporal variation in CP content. Different from previous investigations, our model was partially independent of NDVI, as it included the green and red portions of the spectrum as direct predictors of CP content. From 2000 to 2021, the model predicted that CP content was a limiting factor for growth of yearling cattle in 80% of the years for about 60% of the mid-May to October grazing season. The risk of forage quality being below the CP content threshold increases as the grazing season progresses, suggesting that ranchers across this rangeland region could benefit from remotely sensed CP content to proactively remove yearling cattle earlier than the traditional October date or to strategically provide supplemental protein sources to grazing cattle. EEA Concepción del Uruguay Fil: Irisarri, Jorge Gonzalo Nicolás. Rothamsted Research. Sustainable Agriculture Sciences; Reino Unido Fil: Durante, Martin. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Concepción del Uruguay; Argentina Fil: Durante, Martin. Instituto Nacional de Investigación Agropecuaria (INIA). Estación Experimental INIA Tacuarembó. Programa Pasturas y Forrajes; Uruguay Fil: Derner, Justin D. United States Department of Agriculture-Agricultural Research Service. Rangeland Resources Research Unit; Estados Unidos Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Oesterheld, Martin. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Augustine, David J.. United States Department of Agriculture–Agricultural Research Service. Rangeland Resources and Systems Research Unit; Estados Unidos
- Subjects :
- Crude protein threshold
Forage
Proteina Bruta
MOD09A1
Evaluación de Riesgos
Remote sensing
Crude Protein
Risk Assessment
crude protein threshold
forage quality
shortgrass rangeland
remote sensing
risk assessment
semi-arid environment
Remote Sensing
Grazing
Forage quality
Ganado Bovino
Teledetección
Pastoreo
General Earth and Planetary Sciences
Cattle
Forrajes
Shortgrass rangeland
Risk assessment
Semi-arid environment
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Remote Sensing 14 (4) : 854 (February 2022), INTA Digital (INTA), Instituto Nacional de Tecnología Agropecuaria, instacron:INTA, Remote Sensing; Volume 14; Issue 4; Pages: 854
- Accession number :
- edsair.doi.dedup.....b94c34c04a5c0ae6c860cffbf72aeb06
- Full Text :
- https://doi.org/10.3390/rs14040854