Back to Search
Start Over
The signs of the Stieltjes constants associated with the Dedekind zeta function
- Source :
- Proc. Japan Acad. Ser. A Math. Sci. 94, no. 10 (2018), 93-96
- Publication Year :
- 2017
-
Abstract
- The Stieltjes constants $\gamma_{n}(K)$ of a number field $K$ are the coefficients of the Laurent expansion of the Dedekind zeta function $\zeta_{K}(s)$ at its pole $s=1$. In this paper, we establish a similar expression of $\gamma_{n}(K)$ as Stieltjes obtained in 1885 for $\gamma_{n}(\mathbf{Q})$. We also study the signs of $\gamma_{n}(K)$.
- Subjects :
- Dedekind zeta function
Physics
Mathematics - Number Theory
General Mathematics
Laurent series
010102 general mathematics
Stieltjes constants
Riemann–Stieltjes integral
010103 numerical & computational mathematics
Algebraic number field
01 natural sciences
Riemann zeta function
symbols.namesake
11M06
FOS: Mathematics
symbols
Number Theory (math.NT)
0101 mathematics
11R42
Mathematical physics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Proc. Japan Acad. Ser. A Math. Sci. 94, no. 10 (2018), 93-96
- Accession number :
- edsair.doi.dedup.....b9b6b32fd50a85b990044f235d1066ca