Back to Search
Start Over
Best approximations by smooth functions
- Source :
- Journal of Approximation Theory. (2):147-178
- Publisher :
- Published by Elsevier Inc.
-
Abstract
- THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI. i.e., there exists a = c,, <
Details
- Language :
- English
- ISSN :
- 00219045
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of Approximation Theory
- Accession number :
- edsair.doi.dedup.....ba2b7329a43a96ccf72f34b6eca6417d
- Full Text :
- https://doi.org/10.1016/0021-9045(81)90084-8