Back to Search Start Over

Best approximations by smooth functions

Authors :
Allan Pinkus
Source :
Journal of Approximation Theory. (2):147-178
Publisher :
Published by Elsevier Inc.

Abstract

THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI. i.e., there exists a = c,, <

Details

Language :
English
ISSN :
00219045
Issue :
2
Database :
OpenAIRE
Journal :
Journal of Approximation Theory
Accession number :
edsair.doi.dedup.....ba2b7329a43a96ccf72f34b6eca6417d
Full Text :
https://doi.org/10.1016/0021-9045(81)90084-8