Back to Search Start Over

Continuum constitutive laws to describe acoustic attenuation in glasses

Authors :
Haoming Luo
Anne Tanguy
Valentina M. Giordano
Anthony Gravouil
Walter Schirmacher
Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
(nano)Matériaux pour l'énergie (ENERGIE)
Institut Lumière Matière [Villeurbanne] (ILM)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Institut für Physik [Mainz]
Johannes Gutenberg - Universität Mainz (JGU)
ONERA, Université Paris Saclay [Palaiseau]
ONERA-Université Paris-Saclay
Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
Source :
Physical Review E, Physical Review E, American Physical Society (APS), 2020, 102 (3), pp.033003. ⟨10.1103/PhysRevE.102.033003⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engineering. However, the computational cost associated to the large system size required for correctly simulating them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at play without entering in the atomistic details. Still, a correct description should be able to reproduce not only the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial is made out of a glass, which is intrinsically highly dissipative and with a wave attenuation strongly dependent on frequency. Here we propose a continuum mechanical model for a viscoelastic medium, able to bridge atomic and macroscopic scale in amorphous materials and describe phonon attenuation due to atomistic mechanisms, characterized by a defined frequency dependence. This represents a first decisive step for investigating the effect of a complex nano- or microstructure on acoustic attenuation, while including the atomistic contribution as well.

Details

Language :
English
ISSN :
24700045 and 24700053
Database :
OpenAIRE
Journal :
Physical Review E, Physical Review E, American Physical Society (APS), 2020, 102 (3), pp.033003. ⟨10.1103/PhysRevE.102.033003⟩
Accession number :
edsair.doi.dedup.....ba309d4b86b51d2183247f8a26811cab