Back to Search Start Over

Braids, Shuffles and Symmetrizers

Authors :
A. P. Isaev
Oleg Ogievetsky
Centre de Physique Théorique - UMR 6207 (CPT)
Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
Source :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, 2009, 42 (30), pp.304017. ⟨10.1088/1751-8113/42/30/304017⟩, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42 (30), pp.304017. ⟨10.1088/1751-8113/42/30/304017⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined.<br />18 pages

Details

Language :
English
ISSN :
17518113 and 17518121
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and Theoretical, Journal of Physics A: Mathematical and Theoretical, 2009, 42 (30), pp.304017. ⟨10.1088/1751-8113/42/30/304017⟩, Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2009, 42 (30), pp.304017. ⟨10.1088/1751-8113/42/30/304017⟩
Accession number :
edsair.doi.dedup.....ba6fdf7eb2e5316fe670eefbfab61a08
Full Text :
https://doi.org/10.1088/1751-8113/42/30/304017⟩