Back to Search Start Over

Biofunctionalized Calcium Phosphate Cement to Enhance the Attachment and Osteodifferentiation of Stem Cells Released from Fast-Degradable Alginate-Fibrin Microbeads

Authors :
Wenchuan Chen
Michael D. Weir
Hockin H.K. Xu
Hongzhi Zhou
Source :
Tissue Engineering Part A. 18:1583-1595
Publication Year :
2012
Publisher :
Mary Ann Liebert Inc, 2012.

Abstract

Stem cell-encapsulating microbeads could be mixed into a paste such as calcium phosphate cement (CPC), where the microbeads could protect the cells from the mixing and injection forces. After being placed, the microbeads could quickly degrade to release the cells throughout the scaffold, while creating macropores. The objectives of this study were to (1) construct alginate-fibrin microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs) embedded in the surface of novel biofunctionalized CPC and (2) investigate microbead degradation, cell release, and osteodifferentiation on CPC. Hydrogel microbeads were fabricated that encapsulated hUCMSCs at 1×10(6) cells/mL. CPC was biofunctionalized with fibronectin (Fn) and Arg-Gly-Asp (RGD). Four scaffolds were tested: CPC control, CPC mixed with Fn, CPC mixed with RGD, and CPC grafted with RGD. The degradable microbeads released hUCMSCs at 7 days, which attached to CPC. Adding Fn or RGD to CPC greatly improved cell attachment. CPC grafted with RGD showed the fastest cell proliferation, with cell density being ninefold that on CPC control. The released hUCMSCs underwent osteodifferentiation. Alkaline phosphatase, osteocalcin, collagen 1, and runt-related transcription factor 2 (Runx2) gene expression increased by 10 to 30 fold at 7-21 days, compared with day 1. The released cells on CPC synthesized bone minerals, with the mineralization amount at 21 days being two orders of magnitude higher than that at 7 days. In conclusion, alginate-fibrin microbeads embedded in CPC surface were able to quickly release the hUCMSCs that attached to biofunctionalized CPC. Incorporating Fn and RGD into CPC greatly improved cell function, and CPC grafted with RGD had the fastest cell proliferation. The released cells on CPC differentiated into the osteogenic lineage and synthesized bone minerals. The new biofunctionalized CPC with hUCMSC-encapsulating microbeads is promising for bone regeneration applications.

Details

ISSN :
1937335X and 19373341
Volume :
18
Database :
OpenAIRE
Journal :
Tissue Engineering Part A
Accession number :
edsair.doi.dedup.....bab48fe010ea05a3b7224fdcb75bd0c4
Full Text :
https://doi.org/10.1089/ten.tea.2011.0604