Back to Search Start Over

Assembly regulatory domain of glial fibrillary acidic protein. A single phosphorylation diminishes its assembly-accelerating property

Authors :
Masatoshi Takeda
Tsuyoshi Nishimura
Yusuke Nakamura
Hironobu Hojo
S Hariguchi
Toshifumi Takao
Yasutsugu Shimonishi
Saburo Aimoto
Source :
Journal of Biological Chemistry. 267:23269-23274
Publication Year :
1992
Publisher :
Elsevier BV, 1992.

Abstract

Phosphorylation of glial fibrillary acidic protein (GFAP) induces disassembly of the filaments. An amino-terminal fragment of bovine GFAP (G-Hf) was produced by lysylendopeptidase digestion. G-Hf formed ribbon-like filaments in the presence of GFAP even in low ionic strength, whereas the fragment itself did not form any structures. Only one (PK3) of the five V8 protease fragments of G-Hf accelerated GFAP assembly to the same degree as G-Hf did, whereas the other fragments did not. When PK3 was cleaved into two fragments, it lost the assembly-accelerating property. The sequence of PK3 was determined as RRRVTSATRRSYVSSSE, which corresponded to residues 3-19 of porcine GFAP. It was concluded that PK3 contains a sequence indispensable for GFAP assembly and that neither PK1 (RRRVTS) nor PK2 (ATRRSYVSSSE) included all of the sequence. A single phosphorylation of PK3 by cyclic AMP-dependent protein kinase diminished its assembly-accelerating property. The phosphorylation site was determined as Ser-12 of porcine GFAP. It was shown that single phosphorylation of the amino-terminal head domain, which contains an indispensable sequence for GFAP assembly, might be sufficient for GFAP disassembly.

Details

ISSN :
00219258
Volume :
267
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....bacdc42b9eab0c678152fff19841a671
Full Text :
https://doi.org/10.1016/s0021-9258(18)50086-7