Back to Search Start Over

Materials for electrochemical capacitors

Authors :
Yury Gogotsi
Patrice Simon
Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT)
Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Drexel University
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Drexel University (USA)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Institut universitaire de France - IUF (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Source :
Nature Materials, Nature Materials, Nature Publishing Group, 2008, 7 (11), pp.845-854. ⟨10.1038/nmat2297⟩
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

International audience; Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow’s high-energy and high-power devices.

Details

ISSN :
14764660 and 14761122
Volume :
7
Database :
OpenAIRE
Journal :
Nature Materials
Accession number :
edsair.doi.dedup.....bb22ffa8b48a40fb98b9f911cc6cd199
Full Text :
https://doi.org/10.1038/nmat2297