Back to Search Start Over

The Galactic Faraday rotation sky 2020

Authors :
Steve Croft
Tessa Vernstrom
Charles L. H. Hull
M. C. H. Wright
A. Clegg
Peter Williams
Bryan Gaensler
Jane F. Kaczmarek
George Heald
Subhashis Roy
Timothy W. Shimwell
C. Tasse
Allison H. Costa
G. C. Bower
Yik Ki Ma
C. J. Riseley
Makoto Inoue
Shane O'Sullivan
Torsten A. Enßlin
Charlotte Sobey
Sui Ann Mao
Jeroen Stil
Marcus Brüggen
C. J. Law
M. Haverkorn
Tracy E. Clarke
F. de Gasperin
C. L. Van Eck
R. Shanahan
Craig S. Anderson
V. Vacca
S. K. Betti
Sebastian Hutschenreuter
Jo-Anne Brown
Melanie Johnston-Hollitt
E. Carretti
Dave MacMahon
Source :
Astronomy & Astrophysics, 657, 1-14, Astronomy & Astrophysics, 657:A43, Astronomy & Astrophysics, 657, pp. 1-14
Publication Year :
2022

Abstract

This work gives an update to existing reconstructions of the Galactic Faraday rotation sky by processing almost all Faraday rotation data sets available at the end of the year 2020. Observations of extra-Galactic sources in recent years have, among other regions, further illuminated the previously under-constrained southern celestial sky, as well as parts of the inner disc of the Milky Way. This has culminated in an all-sky data set of 55,190 data points, which is a significant expansion on the 41,330 used in previous works, hence making an updated separation of the Galactic component a promising venture. The increased source density allows us to present our results in a resolution of about $1.3\cdot 10^{-2}\, \mathrm{deg}^2$ ($46.8\,\mathrm{arcmin}^2$), which is a twofold increase compared to previous works. As for previous Faraday rotation sky reconstructions, this work is based on information field theory, a Bayesian inference scheme for field-like quantities which handles noisy and incomplete data. In contrast to previous reconstructions, we find a significantly thinner and pronounced Galactic disc with small-scale structures exceeding values of several thousand $\mathrm{rad}\,\mathrm{m}^{-2}$. The improvements can mainly be attributed to the new catalog of Faraday data, but are also supported by advances in correlation structure modeling within numerical information field theory. We furthermore give a detailed discussion on statistical properties of the Faraday rotation sky and investigate correlations to other data sets.<br />Comment: accepted in A&A; 15 pages, 12 Figures; results at https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/faraday2020.html and http://cutouts.cirada.ca/rmcutout

Details

ISSN :
14320746
Database :
OpenAIRE
Journal :
Astronomy & Astrophysics, 657, 1-14, Astronomy & Astrophysics, 657:A43, Astronomy & Astrophysics, 657, pp. 1-14
Accession number :
edsair.doi.dedup.....bb34861166d0495863684e0e2f62f622