Back to Search
Start Over
Embryonic Lethality after Combined Inactivation of Fancd2 and Mlh1 in Mice
- Source :
- Cancer Research. 69:9431-9438
- Publication Year :
- 2009
- Publisher :
- American Association for Cancer Research (AACR), 2009.
-
Abstract
- DNA repair defects are frequently encountered in human cancers. These defects are utilized by traditional therapeutics but also offer novel cancer treatment strategies based on synthetic lethality. To determine the consequences of combined Fanconi anemia (FA) and mismatch repair pathway inactivation, defects in Fancd2 and Mlh1 were combined in one mouse model. Fancd2/Mlh1 double-mutant embryos displayed growth retardation resulting in embryonic lethality and significant underrepresentation among progeny. Additional inactivation of Trp53 failed to improve the survival of Fancd2/Mlh1–deficient embryos. Mouse fibroblasts were obtained and challenged with cross-linking agents. Fancd2-deficient cells displayed the FA-characteristic growth inhibition after mitomycin C (MMC) exposure. In primary fibroblasts, the absence of Mlh1 did not greatly affect the MMC sensitivity of Fancd2-deficient and Fancd2-proficient cells. However, in Trp53 mutant immortalized fibroblasts, Mlh1 deficiency reduced the growth-inhibiting effect of MMC in Fancd2 mutant and complemented cells. Similar data were obtained using psoralen/UVA, signifying that MLH1 influences the cellular sensitivity to DNA interstrand cross-links. Next, the effect of MLH1 deficiency on the formation of chromosomal aberrations in response to cross-linking agents was determined. Surprisingly, Mlh1 mutant fibroblasts displayed a modest but noticeable decrease in induced chromosomal breakage and interchange frequencies, suggesting that MLH1 promotes interstrand cross-link repair catastrophe. In conclusion, the combined inactivation of Fancd2 and Mlh1 did not result in synthetic lethality at the cellular level. Although the absence of Fancd2 sensitized Mlh1/Trp53 mutant fibroblasts to MMC, the differential survival of primary and immortalized fibroblasts advocates against systemic inactivation of FANCD2 to enhance treatment of MLH1-deficient tumors. [Cancer Res 2009;69(24):9431–8]
- Subjects :
- Male
congenital, hereditary, and neonatal diseases and abnormalities
Cancer Research
DNA repair
Mitomycin
Mutant
Synthetic lethality
Biology
DNA Mismatch Repair
Article
Mice
Mismatch Repair Pathway
Pregnancy
Fanconi anemia
hemic and lymphatic diseases
FANCD2
medicine
Animals
Inbreeding
Gene Silencing
Adaptor Proteins, Signal Transducing
Chromosome Aberrations
Mice, Knockout
Fetal Growth Retardation
Fanconi Anemia Complementation Group D2 Protein
Mitomycin C
Nuclear Proteins
nutritional and metabolic diseases
Embryo, Mammalian
medicine.disease
Molecular biology
digestive system diseases
Mice, Inbred C57BL
Fanconi Anemia
Oncology
Female
DNA mismatch repair
MutL Protein Homolog 1
Subjects
Details
- ISSN :
- 15387445 and 00085472
- Volume :
- 69
- Database :
- OpenAIRE
- Journal :
- Cancer Research
- Accession number :
- edsair.doi.dedup.....bb46eebc50fd8745a09bedb01a147782
- Full Text :
- https://doi.org/10.1158/0008-5472.can-09-2452