Back to Search Start Over

A Bregman Majorization-Minimization Framework for PET Image Reconstruction

Authors :
Rossignol, Claire
Sureau, Florent
Chouzenoux, Émilie
Comtat, Claude
Pesquet, Jean-Christophe
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
LaBoratoire d'Imagerie biOmédicale MultimodAle Paris-Saclay (BIOMAPS)
Service Hospitalier Frédéric Joliot (SHFJ)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
This research work received funding support from the European Research Council Starting Grant MAJORIS ERC-2019-STG-850925.
European Project: ERC-2019-STG-850925,MAJORIS(2020)
Source :
ICIP 2022-29th IEEE International Conference on Image Processing, ICIP 2022-29th IEEE International Conference on Image Processing, Oct 2022, Bordeaux, France
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Positron emission tomography (PET) is a quantitative imaging modality widely used in oncology, neurology, and pharmacology. The data acquired by a PET scanner correspond to projections of the concentration activity, assumed to follow a Poisson distribution. The reconstruction of images from tomographic projections corrupted by Poisson noise is a challenging ill-posed large-scale inverse problem. Several available solvers use the majorization-minimization (MM) principle, though relying on various construction strategies with a lack of unifying framework. This work fills the gap by introducing the concept of Bregman majorization. This leads to a unified view of MM-based methods for image reconstruction in the presence of Poisson noise. From this general approach, we exhibit three algorithmic solutions and compare their computational efficiency on a problem of dynamic PET image reconstruction, either using GPU or CPU processing.

Details

Language :
English
Database :
OpenAIRE
Journal :
ICIP 2022-29th IEEE International Conference on Image Processing, ICIP 2022-29th IEEE International Conference on Image Processing, Oct 2022, Bordeaux, France
Accession number :
edsair.doi.dedup.....bbb41eee76778f5e4f47b20cd3b4b015