Back to Search Start Over

Very high frequency probes for atomic force microscopy with silicon optomechanics

Authors :
L. Schwab
P. E. Allain
N. Mauran
X. Dollat
L. Mazenq
D. Lagrange
M. Gély
S. Hentz
G. Jourdan
I. Favero
B. Legrand
Équipe Microsystèmes électromécaniques (LAAS-MEMS)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162))
Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Service Instrumentation Conception Caractérisation (LAAS-I2C)
Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM)
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
ANR-14-CE26-0019,OLYMPIA,Sondes opto-mécaniques pour la microscopie AFM rapide(2014)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC)
Source :
Microsystems & Nanoengineering, Microsystems & Nanoengineering, 2022, 8, pp.32. ⟨10.1038/s41378-022-00364-4⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Atomic force microscopy (AFM) has been consistently supporting nanosciences and nanotechnologies for over 30 years and is used in many fields from condensed matter physics to biology. It enables the measurement of very weak forces at the nanoscale, thus elucidating the interactions at play in fundamental processes. Here, we leverage the combined benefits of micro/nanoelectromechanical systems and cavity optomechanics to fabricate a sensor for dynamic mode AFM at a frequency above 100 MHz. This frequency is two decades above the fastest commercial AFM probes, suggesting an opportunity for measuring forces at timescales unexplored thus far. The fabrication is achieved using very-large-scale integration technologies derived from photonic silicon circuits. The probe’s optomechanical ring cavity is coupled to a 1.55 μm laser light and features a 130 MHz mechanical resonance mode with a quality factor of 900 in air. A limit of detection in the displacement of 3 × 10−16 m/√Hz is obtained, enabling the detection of the Brownian motion of the probe and paving the way for force sensing experiments in the dynamic mode with a working vibration amplitude in the picometer range. When inserted in a custom AFM instrument embodiment, this optomechanical sensor demonstrates the capacity to perform force-distance measurements and to maintain a constant interaction strength between the tip and sample, an essential requirement for AFM applications. Experiments indeed show a stable closed-loop operation with a setpoint of 4 nN/nm for an unprecedented subpicometer vibration amplitude, where the tip–sample interaction is mediated by a stretched water meniscus.

Details

Language :
English
ISSN :
20557434
Database :
OpenAIRE
Journal :
Microsystems & Nanoengineering, Microsystems & Nanoengineering, 2022, 8, pp.32. ⟨10.1038/s41378-022-00364-4⟩
Accession number :
edsair.doi.dedup.....bbda7d75757b3e46a2801f7bb290a1a5