Back to Search Start Over

Quantitative estimates for bending energies and applications to non-local variational problems

Authors :
Matthias Röger
Matteo Novaga
Michael Goldman
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Dipartimento di Matematica Pura e Applicata [Padova]
Universita degli Studi di Padova
Fakultät für Mathematik [Dortmund]
Laboratoire Jacques-Louis Lions ( LJLL )
Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS )
Source :
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Cambridge University Press (CUP), In press, HAL
Publication Year :
2019
Publisher :
Cambridge University Press (CUP), 2019.

Abstract

We discuss a variational model, given by a weighted sum of perimeter, bending and Riesz interaction energies, that could be considered as a toy model for charged elastic drops. The different contributions have competing preferences for strongly localized and maximally dispersed structures. We investigate the energy landscape in dependence of the size of the ‘charge’, that is, the weight of the Riesz interaction energy.In the two-dimensional case, we first prove that for simply connected sets of small elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this result, we show that for small charge the only minimizers of the full variational model are either balls or centred annuli. We complement these statements by a non-existence result for large charge. In three dimensions, we prove area and diameter bounds for configurations with small Willmore energy and show that balls are the unique minimizers of our variational model for sufficiently small charge.

Details

ISSN :
14737124 and 03082105
Volume :
150
Database :
OpenAIRE
Journal :
Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Accession number :
edsair.doi.dedup.....bc204fdfc4d15154eb5ce640959c9915
Full Text :
https://doi.org/10.1017/prm.2018.149