Back to Search Start Over

Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein substrates

Authors :
Ron Benyair
Navit Ogen-Shtern
Marcelo Ehrlich
Ben Shai
Niv Mazkereth
Gerardo Z. Lederkremer
Source :
Molecular Biology of the Cell
Publication Year :
2015
Publisher :
American Society for Cell Biology (ASCB), 2015.

Abstract

ER mannosidase I (ERManI) was found recently in the Golgi. This result is found to arise artificially from membrane disturbance in immunofluorescence methods. ERManI is located in novel vesicles to which substrates traffic and that converge at the ER-derived quality control compartment under ER stress.<br />Endoplasmic reticulum α1,2 mannosidase I (ERManI), a central component of ER quality control and ER-associated degradation (ERAD), acts as a timer enzyme, modifying N-linked sugar chains of glycoproteins with time. This process halts glycoprotein folding attempts when necessary and targets terminally misfolded glycoproteins to ERAD. Despite the importance of ERManI in maintenance of glycoprotein quality control, fundamental questions regarding this enzyme remain controversial. One such question is the subcellular localization of ERManI, which has been suggested to localize to the ER membrane, the ER-derived quality control compartment (ERQC), and, surprisingly, recently to the Golgi apparatus. To try to clarify this controversy, we applied a series of approaches that indicate that ERManI is located, at the steady state, in quality control vesicles (QCVs) to which ERAD substrates are transported and in which they interact with the enzyme. Both endogenous and exogenously expressed ERManI migrate at an ER-like density on iodixanol gradients, suggesting that the QCVs are derived from the ER. The QCVs are highly mobile, displaying dynamics that are dependent on microtubules and COP-II but not on COP-I vesicle machinery. Under ER stress conditions, the QCVs converge in a juxtanuclear region, at the ERQC, as previously reported. Our results also suggest that ERManI is turned over by an active autophagic process. Of importance, we found that membrane disturbance, as is common in immunofluorescence methods, leads to an artificial appearance of ERManI in a Golgi pattern.

Details

ISSN :
19394586 and 10591524
Volume :
26
Database :
OpenAIRE
Journal :
Molecular Biology of the Cell
Accession number :
edsair.doi.dedup.....bc2ea116ed07249bd067adfbcef8f3d9
Full Text :
https://doi.org/10.1091/mbc.e14-06-1152