Back to Search
Start Over
Defining the regenerative effects of native spider silk fibers on primary Schwann cells, sensory neurons, and nerve‐associated fibroblasts
- Source :
- The FASEB Journal
- Publication Year :
- 2020
- Publisher :
- John Wiley and Sons Inc., 2020.
-
Abstract
- The search for a suitable material to promote regeneration after long‐distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve‐associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi‐color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out‐growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co‐cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.
- Subjects :
- 0301 basic medicine
Male
Cell type
Sensory Receptor Cells
proliferation
Neuronal Outgrowth
Silk
migration
Biochemistry
Rats, Sprague-Dawley
03 medical and health sciences
0302 clinical medicine
Dorsal root ganglion
Live cell imaging
Laminin
Cell Movement
Genetics
medicine
Animals
Spider silk
Nephila edulis
Molecular Biology
Research Articles
Cells, Cultured
biology
Regeneration (biology)
fungi
Spiders
Fibroblasts
biology.organism_classification
peripheral nerve regeneration
Cell biology
Nerve Regeneration
Rats
live cell imaging
030104 developmental biology
medicine.anatomical_structure
SILK
nervous system
biology.protein
Female
Schwann Cells
030217 neurology & neurosurgery
Biotechnology
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 15306860 and 08926638
- Volume :
- 35
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- The FASEB Journal
- Accession number :
- edsair.doi.dedup.....bc3547e73d21bf083cdd554c50d4998c