Back to Search Start Over

Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution

Authors :
Alexandre Hassanin
Origine, structure et évolution de la biodiversité (OSEB)
Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Molecular Phylogenetics and Evolution, Molecular Phylogenetics and Evolution, Elsevier, 2006, pp.100-116
Publication Year :
2006
Publisher :
Elsevier BV, 2006.

Abstract

In this study, mitochondrial sequences were used to investigate the relationships among the major lineages of Arthropoda. The data matrix used for the analyses includes 84 taxa and 3918 nucleotides representing six mitochondrial protein-coding genes (atp6 and 8, cox1-3, and nad2). The analyses of nucleotide composition show that a reverse strand-bias, i.e., characterized by an excess of T relative to A nucleotides and of G relative to C nucleotides, was independently acquired in six different lineages of Arthropoda: (1) the honeybee mite (Varroa), (2) Opisthothelae spiders (Argiope, Habronattus, and Ornithoctonus), (3) scorpions (Euscorpius and Mesobuthus), (4) Hutchinsoniella (Cephalocarid), (5) Tigriopus (Copepod), and (6) whiteflies (Aleurodicus and Trialeurodes). Phylogenetic analyses confirm that these convergences in nucleotide composition can be particularly misleading for tree reconstruction, as unrelated taxa with reverse strand-bias tend to group together in MP, ML, and Bayesian analyses. However, the use of a specific model for minimizing effects of the bias, the "Neutral Transition Exclusion" (NTE) model, allows Bayesian analyses to rediscover most of the higher taxa of Arthropoda. Furthermore, the analyses of branch lengths suggest that three main factors explain accelerated rates of substitution: (1) genomic rearrangements, including duplication of the control region and gene translocation, (2) parasitic lifestyle, and (3) small body size. The comparisons of Bayesian Bootstrap percentages show that the support for many nodes increases when taxa with long branches are excluded from the analyses. It is therefore recommended to select taxa and genes of the mitochondrial genome for inferring phylogenetic relationships among arthropod lineages. The phylogenetic analyses support the existence of a major dichotomy within Arthropoda, separating Pancrustacea and Paradoxopoda. Basal relationships between Pancrustacean lineages are not robust, and the question of Hexapod monophyly or polyphyly cannot be answered with the available mitochondrial sequences. Within Paradoxopoda, Chelicerata and Myriapoda are each found to be monophyletic, and Endeis (Pycnogonida) is, surprisingly, associated with Acari.

Details

ISSN :
10557903 and 10959513
Volume :
38
Database :
OpenAIRE
Journal :
Molecular Phylogenetics and Evolution
Accession number :
edsair.doi.dedup.....bc59946989eced65bb3b2f568d4f50b3
Full Text :
https://doi.org/10.1016/j.ympev.2005.09.012