Back to Search Start Over

Role of Lipoxygenase Metabolites of Arachidonic Acid in Enhanced Pulmonary Artery Contractions of Female Rabbits

Authors :
Sandra L. Pfister
Source :
Hypertension. 57:825-832
Publication Year :
2011
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2011.

Abstract

Pulmonary arterial hypertension is characterized by elevated pulmonary artery pressure and vascular resistance. In women the incidence is 4 fold greater than that in men. Studies suggest sustained vasoconstriction is a factor in increased vascular resistance. Possible vasoconstrictor mediators include arachidonic acid-derived lipoxygenase metabolites. Our studies in rabbits showed enhanced endothelium-dependent contractions to arachidonic acid in pulmonary arteries from females compared to males. Because treatment with a non-specific lipoxygenase inhibitor reduced contractions in females but not males, the present study identified which lipoxygenase isoform contributes to sex-specific pulmonary artery vasoconstriction. 15- and 5- but not 12-lipoxygenase protein expression was greater in females. Basal and A23187-stimulated release of 15-, 5- and 12-hydroxyeicosatetraenoic acid from females and males was measured by liquid chromatography/mass spectrometry. Only 15-hydroxyeicosatetraenoic acid synthesis was greater in females compared to males under both basal and stimulated conditions. Vascular contractions to 15-hydroxyeicosatetraenoic acid were enhanced in females compared to males (maximal contraction; 44 ± 6% vs 25 ± 3%). The specific 15-lipoxygenase inhibitor PD146176 (12 μmol/L) decreased arachidonic acid-induced contractions in females (maximal contraction; 93 ± 4% vs 57 ± 10%). If male pulmonary arteries were incubated with estrogen (1 μmol/L, 18 hrs), protein expression of 15-lipoxygenase, and 15-hydroxyeicosatetraenoic acid production increased. Mechanisms to explain the increased incidence of pulmonary hypertension in women are not known. Results suggest the 15-lipoxygenase pathway is different between females and males and is regulated by estrogen. Understanding this novel sex-specific mechanism may provide insight into the increased incidence of pulmonary hypertension in females.

Details

ISSN :
15244563 and 0194911X
Volume :
57
Database :
OpenAIRE
Journal :
Hypertension
Accession number :
edsair.doi.dedup.....bc68e1e2edf4a697573fa1354d55fefc
Full Text :
https://doi.org/10.1161/hypertensionaha.110.168716