Back to Search
Start Over
Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium
- Source :
- Archives of biochemistry and biophysics. 376(2)
- Publication Year :
- 2000
-
Abstract
- Both regular physical exercise and low levels of H(2)O(2) administration result in increased resistance to oxidative stress. We measured the accumulation of reactive carbonyl derivatives and the activities of proteasome complex and DT-diaphorase in cardiac muscle of trained and untrained rats after chronic i.p. administration of 1 ml t-butyl H(2)O(2) (1 mmol/kg for 3 weeks every second day). Twenty-four rats were randomly assigned to a control group administered with saline, control administered with H(2)O(2), and exercised administered either saline or H(2)O(2). The activity of DT-diaphorase significantly increased in H(2)O(2) administered and exercised groups, indicating that an increase in H(2)O(2) levels stimulate the activity of this enzyme. The cardiac muscle of H(2)O(2) administered nonexercised animals accumulated significantly more carbonyl than control group (P0.05). The exercise and H(2)O(2) administration resulted in less oxidatively modified protein than found in nonexercised groups (P0.05). The peptide-like activity of proteasome complex was induced by the treatment of H(2)O(2) and exercise and exercise potentiate the effect of H(2)O(2). On the other hand, the chymotrypsin-like and trypsin-like activities were stimulated only by physical training and H(2)O(2) administration. The data suggest that chronic administration of H(2)O(2) after exercise training decreases the accumulation of carbonyl groups below the steady-state level and induces the activity of proteasome and DT-diaphorase. Hence, the stimulating effect of physical exercise on free radical generation is an important phenomenon of the exercise-induced adaptation process since it increases resistance to oxidative stress. Regular exercise training is a valuable physiological means of preconditioning the myocardium to prolonged oxidative stress.
- Subjects :
- Male
medicine.medical_specialty
Proteasome Endopeptidase Complex
medicine.medical_treatment
Biophysics
Physical exercise
Citrate (si)-Synthase
medicine.disease_cause
Biochemistry
Antioxidants
chemistry.chemical_compound
Multienzyme Complexes
Internal medicine
Physical Conditioning, Animal
medicine
Animals
Chymotrypsin
Trypsin
Rats, Wistar
Hydrogen peroxide
Molecular Biology
Saline
Swimming
Dihydrolipoamide Dehydrogenase
business.industry
Myocardium
Cardiac muscle
Drug Synergism
Proteasome complex
Hydrogen Peroxide
Adaptation, Physiological
Rats
Enzyme Activation
Cysteine Endopeptidases
Oxidative Stress
Endocrinology
medicine.anatomical_structure
Proteasome
chemistry
Rat myocardium
business
Oxidative stress
Subjects
Details
- ISSN :
- 00039861
- Volume :
- 376
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Archives of biochemistry and biophysics
- Accession number :
- edsair.doi.dedup.....bc8341f6bdd9530fbffaecdb4fd93263