Back to Search
Start Over
Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model
- Source :
- Isprs Journal of Photogrammetry and Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 2021, 178 (August), pp.68-80. ⟨10.1016/j.isprsjprs.2021.05.011⟩, ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, pp.68-80. ⟨10.1016/j.isprsjprs.2021.05.011⟩
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- International audience; As remote sensing (RS) data obtained from different sensors become available largely and openly, multimodal data processing and analysis techniques have been garnering increasing interest in the RS and geoscience community. However, due to the gap between different modalities in terms of imaging sensors, resolutions, and contents, embedding their complementary information into a consistent, compact, accurate, and discriminative representation, to a great extent, remains challenging. To this end, we propose a shared and specific feature learning (S2FL) model. S2FL is capable of decomposing multimodal RS data into modality-shared and modality-specific components, enabling the information blending of multi-modalities more effectively, particularly for heterogeneous data sources. Moreover, to better assess multimodal baselines and the newly-proposed S2FL model, three multimodal RS benchmark datasets, i.e., Houston2013 – hyperspectral and multispectral data, Berlin – hyperspectral and synthetic aperture radar (SAR) data, Augsburg – hyperspectral, SAR, and digital surface model (DSM) data, are released and used for land cover classification. Extensive experiments conducted on the three datasets demonstrate the superiority and advancement of our S2FL model in the task of land cover classification in comparison with previously-proposed state-of-the-art baselines. Furthermore, the baseline codes and datasets used in this paper will be made available freely at https://github.com/danfenghong/ISPRS_S2FL.
- Subjects :
- FOS: Computer and information sciences
Multispectral
Computer Vision and Pattern Recognition (cs.CV)
Computer Science - Computer Vision and Pattern Recognition
Feature learning
Remote sensing
Classification
HySpex
Article
DSM
Hyperspectral
Multimodal
Benchmark datasets
Shared features
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Land cover mapping
SAR
Specific features
Subjects
Details
- Language :
- English
- ISSN :
- 18728235 and 09242716
- Volume :
- 178
- Database :
- OpenAIRE
- Journal :
- Isprs Journal of Photogrammetry and Remote Sensing
- Accession number :
- edsair.doi.dedup.....bc8ae55c9345ac02dcb0828060804d05