Back to Search Start Over

Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model

Authors :
Hong, Danfeng
Hu, Jingliang
Yao, Jing
Chanussot, Jocelyn
Zhu, Xiao Xiang
German Aerospace Center (DLR)
Technical University of Munich (TUM)
Chinese Academy of Sciences [Beijing] (CAS)
Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
GIPSA - Signal Images Physique (GIPSA-SIGMAPHY)
GIPSA Pôle Sciences des Données (GIPSA-PSD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)
Apprentissage de modèles à partir de données massives (Thoth)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK)
Source :
Isprs Journal of Photogrammetry and Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 2021, 178 (August), pp.68-80. ⟨10.1016/j.isprsjprs.2021.05.011⟩, ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, pp.68-80. ⟨10.1016/j.isprsjprs.2021.05.011⟩
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

International audience; As remote sensing (RS) data obtained from different sensors become available largely and openly, multimodal data processing and analysis techniques have been garnering increasing interest in the RS and geoscience community. However, due to the gap between different modalities in terms of imaging sensors, resolutions, and contents, embedding their complementary information into a consistent, compact, accurate, and discriminative representation, to a great extent, remains challenging. To this end, we propose a shared and specific feature learning (S2FL) model. S2FL is capable of decomposing multimodal RS data into modality-shared and modality-specific components, enabling the information blending of multi-modalities more effectively, particularly for heterogeneous data sources. Moreover, to better assess multimodal baselines and the newly-proposed S2FL model, three multimodal RS benchmark datasets, i.e., Houston2013 – hyperspectral and multispectral data, Berlin – hyperspectral and synthetic aperture radar (SAR) data, Augsburg – hyperspectral, SAR, and digital surface model (DSM) data, are released and used for land cover classification. Extensive experiments conducted on the three datasets demonstrate the superiority and advancement of our S2FL model in the task of land cover classification in comparison with previously-proposed state-of-the-art baselines. Furthermore, the baseline codes and datasets used in this paper will be made available freely at https://github.com/danfenghong/ISPRS_S2FL.

Details

Language :
English
ISSN :
18728235 and 09242716
Volume :
178
Database :
OpenAIRE
Journal :
Isprs Journal of Photogrammetry and Remote Sensing
Accession number :
edsair.doi.dedup.....bc8ae55c9345ac02dcb0828060804d05