Back to Search Start Over

Extended phenotypic spectrum of KIF5A mutations: From spastic paraplegia to axonal neuropathy

Authors :
Christos Proukakis
Alan M. Pittman
Michaela Auer-Grumbach
Henry Houlden
Kevin G. Shields
Mary M. Reilly
James M. Polke
Alejandro Horga
Joshua Hersheson
Stephan Züchner
Matilde Laura
Zane Jaunmuktane
Mary G. Sweeney
Yo Tsen Liu
John C. Janssen
Deborah Hughes
Sebastian Brandner
Source :
Neurology. 83:612-619
Publication Year :
2014
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2014.

Abstract

Objective: To establish the phenotypic spectrum of KIF5A mutations and to investigate whether KIF5A mutations cause axonal neuropathy associated with hereditary spastic paraplegia (HSP) or typical Charcot-Marie-Tooth disease type 2 (CMT2). Methods: KIF5A sequencing of the motor-domain coding exons was performed in 186 patients with the clinical diagnosis of HSP and in 215 patients with typical CMT2. Another 66 patients with HSP or CMT2 with pyramidal signs were sequenced for all exons of KIF5A by targeted resequencing. One additional patient was genetically diagnosed by whole-exome sequencing. Results: Five KIF5A mutations were identified in 6 unrelated patients: R204W and D232N were novel mutations; R204Q, R280C, and R280H have been previously reported. Three patients had CMT2 as the predominant and presenting phenotype; 2 of them also had pyramidal signs. The other 3 patients presented with HSP but also had significant axonal neuropathy or other additional features. Conclusion: This is currently the largest study investigating KIF5A mutations. By combining next-generation sequencing and conventional sequencing, we confirm that KIF5A mutations can cause variable phenotypes ranging from HSP to CMT2. The identification of mutations in CMT2 broadens the phenotypic spectrum and underlines the importance of KIF5A mutations, which involve degeneration of both the central and peripheral nervous systems and should be tested in HSP and CMT2.

Details

ISSN :
1526632X and 00283878
Volume :
83
Database :
OpenAIRE
Journal :
Neurology
Accession number :
edsair.doi.dedup.....bd39f00746d04c4417d6108db2237069
Full Text :
https://doi.org/10.1212/wnl.0000000000000691