Back to Search
Start Over
Machine Learning Techniques for Pile-Up Rejection in Cryogenic Calorimeters
- Source :
- J.Low Temp.Phys., J.Low Temp.Phys., 2022, 209 (5-6), pp.1024-1031. ⟨10.1007/s10909-022-02741-9⟩
- Publication Year :
- 2022
-
Abstract
- CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li2MoO4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of 100Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency.
- Subjects :
- neural network
Convolutional neural network
hierarchy
crystal
Cryogenic calorimeters
neutrino
Machine learning
CUPID
calorimeter
[INFO]Computer Science [cs]
General Materials Science
[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
Neutrinoless double beta decay
neutrinoless
Pile-up
CUORE
background
double-beta decay
Condensed Matter Physics
Atomic and Molecular Physics, and Optics
Gran Sasso
injection
cryogenics
efficiency
mass
readout
Convolutional neural networks
upgrade
Cryogenic calorimeter
performance
Majorana
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J.Low Temp.Phys., J.Low Temp.Phys., 2022, 209 (5-6), pp.1024-1031. ⟨10.1007/s10909-022-02741-9⟩
- Accession number :
- edsair.doi.dedup.....bd81eedaef99afd84b8cedd605c6ec14
- Full Text :
- https://doi.org/10.1007/s10909-022-02741-9⟩