Back to Search
Start Over
Assessment of Mandibular Movement Monitoring With Machine Learning Analysis for the Diagnosis of Obstructive Sleep Apnea
- Source :
- JAMA network open, Vol. 3, no. 1, p. e1919657 [1-12] (2020), JAMA Network Open, JAMA Network Open, American Medical Association, 2020, 3 (1), pp.e1919657. ⟨10.1001/jamanetworkopen.2019.19657⟩
- Publication Year :
- 2020
-
Abstract
- IMPORTANCE: Given the high prevalence of obstructive sleep apnea (OSA), there is a need for simpler and automated diagnostic approaches. OBJECTIVE: To evaluate whether mandibular movement (MM) monitoring during sleep coupled with an automated analysis by machine learning is appropriate for OSA diagnosis. DESIGN, SETTING, AND PARTICIPANTS: Diagnostic study of adults undergoing overnight in-laboratory polysomnography (PSG) as the reference method compared with simultaneous MM monitoring at a sleep clinic in an academic institution (Sleep Laboratory, Centre Hospitalier Universitaire Université Catholique de Louvain Namur Site Sainte-Elisabeth, Namur, Belgium). Patients with suspected OSA were enrolled from July 5, 2017, to October 31, 2018. MAIN OUTCOMES AND MEASURES: Obstructive sleep apnea diagnosis required either evoking signs or symptoms or related medical or psychiatric comorbidities coupled with a PSG-derived respiratory disturbance index (PSG-RDI) of at least 5 events/h. A PSG-RDI of at least 15 events/h satisfied the diagnosis criteria even in the absence of associated symptoms or comorbidities. Patients who did not meet these criteria were classified as not having OSA. Agreement analysis and diagnostic performance were assessed by Bland-Altman plot comparing PSG-RDI and the Sunrise system RDI (Sr-RDI) with diagnosis threshold optimization via receiver operating characteristic curves, allowing for evaluation of the device sensitivity and specificity in detecting OSA at 5 events/h and 15 events/h. RESULTS: Among 376 consecutive adults with suspected OSA, the mean (SD) age was 49.7 (13.2) years, the mean (SD) body mass index was 31.0 (7.1), and 207 (55.1%) were men. Reliable agreement was found between PSG-RDI and Sr-RDI in patients without OSA (n = 46; mean difference, 1.31; 95% CI, -1.05 to 3.66 events/h) and in patients with OSA with a PSG-RDI of at least 5 events/h with symptoms (n = 107; mean difference, -0.69; 95% CI, -3.77 to 2.38 events/h). An Sr-RDI underestimation of -11.74 (95% CI, -20.83 to -2.67) events/h in patients with OSA with a PSG-RDI of at least 15 events/h was detected and corrected by optimization of the Sunrise system diagnostic threshold. The Sr-RDI showed diagnostic capability, with areas under the receiver operating characteristic curve of 0.95 (95% CI, 0.92-0.96) and 0.93 (95% CI, 0.90-0.93) for corresponding PSG-RDIs of 5 events/h and 15 events/h, respectively. At the 2 optimal cutoffs of 7.63 events/h and 12.65 events/h, Sr-RDI had accuracy of 0.92 (95% CI, 0.90-0.94) and 0.88 (95% CI, 0.86-0.90) as well as posttest probabilities of 0.99 (95% CI, 0.99-0.99) and 0.89 (95% CI, 0.88-0.91) at PSG-RDIs of at least 5 events/h and at least 15 events/h, respectively, corresponding to positive likelihood ratios of 14.86 (95% CI, 9.86-30.12) and 5.63 (95% CI, 4.92-7.27), respectively. CONCLUSIONS AND RELEVANCE: Automatic analysis of MM patterns provided reliable performance in RDI calculation. The use of this index in OSA diagnosis appears to be promising.
- Subjects :
- Adult
Male
Mandibular Nerve
Movement
Polysomnography
Monitoring, Ambulatory
Machine learning
computer.software_genre
Sensitivity and Specificity
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
Academic institution
Machine Learning
03 medical and health sciences
0302 clinical medicine
Belgium
Respiratory disturbance index
medicine
Humans
ComputingMilieux_MISCELLANEOUS
Original Investigation
2. Zero hunger
Sleep Apnea, Obstructive
High prevalence
medicine.diagnostic_test
Receiver operating characteristic
business.industry
Sleep laboratory
General Medicine
Middle Aged
medicine.disease
Obstructive sleep apnea
030228 respiratory system
Female
Artificial intelligence
business
Body mass index
computer
[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 25743805
- Volume :
- 3
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- JAMA network open
- Accession number :
- edsair.doi.dedup.....bde18e7e40a7f098a4ef7e672c67f719
- Full Text :
- https://doi.org/10.1001/jamanetworkopen.2019.19657⟩