Back to Search Start Over

Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning

Authors :
Anthony Lasenby
Will Handley
Edward Higson
Michael P. Hobson
Higson, Edward [0000-0001-8383-4614]
Handley, William [0000-0002-5866-0445]
Lasenby, Anthony [0000-0002-8208-6332]
Apollo - University of Cambridge Repository
Source :
Monthly Notices of the Royal Astronomical Society.
Publication Year :
2018
Publisher :
Oxford University Press (OUP), 2018.

Abstract

We present a principled Bayesian framework for signal reconstruction, in which the signal is modelled by basis functions whose number (and form, if required) is determined by the data themselves. This approach is based on a Bayesian interpretation of conventional sparse reconstruction and regularisation techniques, in which sparsity is imposed through priors via Bayesian model selection. We demonstrate our method for noisy 1- and 2-dimensional signals, including astronomical images. Furthermore, by using a product-space approach, the number and type of basis functions can be treated as integer parameters and their posterior distributions sampled directly. We show that order-of-magnitude increases in computational efficiency are possible from this technique compared to calculating the Bayesian evidences separately, and that further computational gains are possible using it in combination with dynamic nested sampling. Our approach can also be readily applied to neural networks, where it allows the network architecture to be determined by the data in a principled Bayesian manner by treating the number of nodes and hidden layers as parameters.<br />This work was performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.

Details

ISSN :
13652966 and 00358711
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....bdf1209a5fb54350fc92a49f826cc261
Full Text :
https://doi.org/10.1093/mnras/sty3307