Back to Search Start Over

Wave trapping and E × B staircases

Authors :
Philippe Ghendrih
Yanick Sarazin
G. Dif-Pradalier
C. Gillot
Laure Vermare
Xavier Garbet
V. Grandgirard
R Varennes
O Panico
Institut de Recherche sur la Fusion par confinement Magnétique (IRFM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
École normale supérieure de Lyon (ENS de Lyon)
Laboratoire de Physique des Plasmas (LPP)
Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
National Science Foundation under Grant No. NSF PHY-1748958
École normale supérieure - Lyon (ENS Lyon)
Source :
Physics of Plasmas, Physics of Plasmas, 2021, ⟨10.1063/5.0042930⟩, Physics of Plasmas, American Institute of Physics, 2021, ⟨10.1063/5.0042930⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; A model of E×B staircases is proposed, based on a wave kinetic equation coupled to a poloidal momentum equation. A staircase pattern is idealised as a periodic radial structure of zonal shear layers that bound regions of propagating wave packets, viewed as avalanches. Wave packets are trapped in shear flow layers due to refraction. In this model an E × B staircase motif emerges due to the interaction between propagating wave packets (avalanches) and trapped waves in presence of an instability drive. Amplitude, shape, and spatial period of the staircase E × B flow are predicted as functions of the background fluctuation spectrum and the growth rate of drift waves. The zonal flow velocity radial profile is found to peak near its maxima and to flatten near its minima. The optimum configuration for staircase formation is a growth rate that is maximum at zero radial wave number. A mean shear flow is responsible for a preferential propagation speed of avalanches. It is not a mandatory condition for the existence of staircase solutions, but has an impact on their spatial period.

Details

Language :
English
ISSN :
1070664X and 10897674
Database :
OpenAIRE
Journal :
Physics of Plasmas, Physics of Plasmas, 2021, ⟨10.1063/5.0042930⟩, Physics of Plasmas, American Institute of Physics, 2021, ⟨10.1063/5.0042930⟩
Accession number :
edsair.doi.dedup.....bdfa24062b54f6b7c4a74c62f74d5e67
Full Text :
https://doi.org/10.1063/5.0042930⟩