Back to Search
Start Over
How Reactivity Variability of Biofunctionalized Particles Is Determined by Superpositional Heterogeneities
- Source :
- ACS Nano, 15(1). American Chemical Society, ACS Nano
- Publication Year :
- 2021
- Publisher :
- American Chemical Society, 2021.
-
Abstract
- The biofunctionalization of particles with specific targeting moieties forms the foundation for molecular recognition in biomedical applications such as targeted nanomedicine and particle-based biosensing. To achieve a high precision of targeting for nanomedicine and high precision of sensing for biosensing, it is important to understand the consequences of heterogeneities of particle properties. Here, we present a comprehensive methodology to study with experiments and simulations the collective consequences of particle heterogeneities on multiple length scales, called superpositional heterogeneities, in generating reactivity variability per particle. Single-molecule techniques are used to quantify stochastic, interparticle, and intraparticle variabilities, in order to show how these variabilities collectively contribute to reactivity variability per particle, and how the influence of each contributor changes as a function of the system parameters such as particle interaction area, the particle size, the targeting moiety density, and the number of particles. The results give insights into the consequences of superpositional heterogeneities for the reactivity variability in biomedical applications and give guidelines on how the precision can be optimized in the presence of multiple independent sources of variability.
- Subjects :
- Materials science
Particle number
General Physics and Astronomy
02 engineering and technology
010402 general chemistry
01 natural sciences
Article
General Materials Science
Reactivity (chemistry)
particles
Particle properties
Particle interaction
biofunctionalization
General Engineering
targeted nanomedicine
reactivity variability
021001 nanoscience & nanotechnology
0104 chemical sciences
System parameters
Particle
Nanomedicine
Particle size
biosensing
heterogeneity
0210 nano-technology
Biological system
Subjects
Details
- Language :
- English
- ISSN :
- 1936086X and 19360851
- Volume :
- 15
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- ACS Nano
- Accession number :
- edsair.doi.dedup.....be3a947f2b91b5fcec0dccb12d9d6d1f
- Full Text :
- https://doi.org/10.1021/acsnano.0c08578