Back to Search
Start Over
Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se2 absorbers via time-resolved-photoluminescence microscopy
- Source :
- Advanced Energy Materials, 2022, 12(3), 2102800
- Publication Year :
- 2022
- Publisher :
- Wiley-Blackwell, 2022.
-
Abstract
- The open-circuit voltage (VOC) is the main limitation to higher efficiencies of Cu(In,Ga)Se2 solar cells. One of the most critical parameters directly affecting VOC is the charge carrier lifetime. Therefore, it is essential to evaluate the extent to which inhomogeneities in material properties limit the carrier lifetime and how postdeposition treatments (PDTs) and growth conditions affect material properties. Time-resolved photoluminescence (TRPL) microscopy is employed at conditions similar to one sun to study carrier lifetime fluctuations in Cu(In,Ga)Se2 with light (Na) and heavy (Rb) alkalis, different substrates, and grown at different temperatures. PDT lowers the amplitude of minority carrier lifetime fluctuations, especially for Rb-treated samples. Upon PDT, the grains’ carrier lifetime increases, and the analysis suggests a reduction in grain boundary recombination. Furthermore, lifetime fluctuations have a small impact on device performance, whereas VOC calculated from TRPL (and continuous-wave PL) agrees with device values within the limits of investigated PDT samples. Finally, up to about half a per cent external radiative efficiencies are experimentally determined from TRPL metrics, and internal radiative efficiencies are approximated. The findings demonstrate that the highest absorber material quality investigated is still limited by nonradiative recombination (grain or grain boundary) and is comparable to state-of-the-art absorbers. This work received financial support in part from the Swiss State Secretary for Education, Research and Innovation (SERI) under Contract No. 17.00105 (EMPIR project HyMet) and from the Swiss Federal Office of Energy (SFOE) (SI/501614-01 ‘‘ImproCIS''). The EMPIR programme was cofinanced by the Participating States and by the European Union's Horizon 2020 research and innovation programme.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Advanced Energy Materials, 2022, 12(3), 2102800
- Accession number :
- edsair.doi.dedup.....be4c7a2eaf52a5e54665ec745f9dd317