Back to Search Start Over

γ-Linolenic acid in maternal milk drives cardiac metabolic maturation

Authors :
Ana Paredes
Raquel Justo-Méndez
Daniel Jiménez-Blasco
Vanessa Núñez
Irene Calero
María Villalba-Orero
Andrea Alegre-Martí
Thierry Fischer
Ana Gradillas
Viviane Aparecida Rodrigues Sant’Anna
Felipe Were
Zhiqiang Huang
Pablo Hernansanz-Agustín
Carmen Contreras
Fernando Martínez
Emilio Camafeita
Jesús Vázquez
Jesús Ruiz-Cabello
Estela Area-Gómez
Fátima Sánchez-Cabo
Eckardt Treuter
Juan Pedro Bolaños
Eva Estébanez-Perpiñá
Francisco Javier Rupérez
Coral Barbas
José Antonio Enríquez
Mercedes Ricote
Agencia Estatal de Investigación (España)
Instituto de Salud Carlos III
Junta de Castilla y León (España)
Ministerio de Ciencia e Innovación (España)
Unión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF)
Swedish Research Council
Swedish Cancer Society (Cancerfonden)
Novo Nordisk Foundation
Fondation Leducq
Fundación La Marató TV3
Ministerio de Economía y Competitividad (España)
Fundación ProCNIC
Ministerio de Ciencia e Innovación. Centro de Excelencia Severo Ochoa (España)
Source :
Nature.
Publication Year :
2023
Publisher :
Springer Science and Business Media LLC, 2023.

Abstract

Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism. Sí

Subjects

Subjects :
Multidisciplinary

Details

ISSN :
14764687 and 00280836
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....be78cc3825500859c8e20538935435db
Full Text :
https://doi.org/10.1038/s41586-023-06068-7