Back to Search Start Over

An ensemble indicator-based density estimator for evolutionary multi-objective optimization

Authors :
Carlos A. Coello Coello
Arnaud Liefooghe
Jesús Guillermo Falcón-Cardona
Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV)
Japanese French Laboratory for Informatics (JFLI)
National Institute of Informatics (NII)-The University of Tokyo (UTokyo)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Optimisation de grande taille et calcul large échelle (BONUS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Lecture Notes in Computer Science, PPSN 2020-Sixteenth International Conference on Parallel Problem Solving from Nature, PPSN 2020-Sixteenth International Conference on Parallel Problem Solving from Nature, Sep 2020, Leiden, Netherlands. pp.201-214, ⟨10.1007/978-3-030-58115-2_14⟩, Parallel Problem Solving from Nature – PPSN XVI ISBN: 9783030581145, PPSN (2)
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Ensemble learning is one of the most employed methods in machine learning. Its main ground is the construction of stronger mechanisms based on the combination of elementary ones. In this paper, we employ AdaBoost, which is one of the most well-known ensemble methods, to generate an ensemble indicator-based density estimator for multi-objective optimization. It combines the search properties of five density estimators, based on the hypervolume, R2, IGD\(^+\), \(\epsilon ^+\), and \(\varDelta _p\) quality indicators. Through the multi-objective evolutionary search process, the proposed ensemble mechanism adapts itself using a learning process that takes the preferences of the underlying quality indicators into account. The proposed method gives rise to the ensemble indicator-based multi-objective evolutionary algorithm (EIB-MOEA) that shows a robust performance on different multi-objective optimization problems when compared with respect to several existing indicator-based multi-objective evolutionary algorithms.

Details

Language :
English
ISBN :
978-3-030-58114-5
ISBNs :
9783030581145
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science, PPSN 2020-Sixteenth International Conference on Parallel Problem Solving from Nature, PPSN 2020-Sixteenth International Conference on Parallel Problem Solving from Nature, Sep 2020, Leiden, Netherlands. pp.201-214, ⟨10.1007/978-3-030-58115-2_14⟩, Parallel Problem Solving from Nature – PPSN XVI ISBN: 9783030581145, PPSN (2)
Accession number :
edsair.doi.dedup.....bebafca0132c21bf33dbaed22b51971d
Full Text :
https://doi.org/10.1007/978-3-030-58115-2_14⟩