Back to Search Start Over

ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions

Authors :
Thuy T. Le
Bing Tang
Kexin Yan
Naphak Modhiran
Jody Hobson-Peters
Troy Dumenil
Daniel J. Rawle
Cameron Bishop
Daniel Watterson
Andreas Suhrbier
Wilson Nguyen
Source :
PLoS Pathogens, PLoS Pathogens, Vol 17, Iss 7, p e1009723 (2021)
Publication Year :
2021
Publisher :
Public Library of Science (PLoS), 2021.

Abstract

SARS-CoV-2 uses the human ACE2 (hACE2) receptor for cell attachment and entry, with mouse ACE2 (mACE2) unable to support infection. Herein we describe an ACE2-lentivirus system and illustrate its utility for in vitro and in vivo SARS-CoV-2 infection models. Transduction of non-permissive cell lines with hACE2 imparted replication competence, and transduction with mACE2 containing N30D, N31K, F83Y and H353K substitutions, to match hACE2, rescued SARS-CoV-2 replication. Intrapulmonary hACE2-lentivirus transduction of C57BL/6J mice permitted significant virus replication in lung epithelium. RNA-Seq and histological analyses illustrated that this model involved an acute inflammatory disease followed by resolution and tissue repair, with a transcriptomic profile similar to that seen in COVID-19 patients. hACE2-lentivirus transduction of IFNAR-/- and IL-28RA-/- mouse lungs was used to illustrate that loss of type I or III interferon responses have no significant effect on virus replication. However, their importance in driving inflammatory responses was illustrated by RNA-Seq analyses. We also demonstrate the utility of the hACE2-lentivirus transduction system for vaccine evaluation in C57BL/6J mice. The ACE2-lentivirus system thus has broad application in SARS-CoV-2 research, providing a tool for both mutagenesis studies and mouse model development.<br />Author summary SARS-CoV-2 uses the human ACE2 (hACE2) receptor to infect cells, but cannot infect mice because the virus cannot bind mouse ACE2 (mACE2). We use an ACE2-lentivirus system in vitro to identify four key amino acids in mACE2 that explain why SARS-CoV-2 cannot infect mice. hACE2-lentivirus was used to express hACE2 in mouse lungs in vivo, with the inflammatory responses after SARS-CoV-2 infection similar to those seen in human COVID-19. Genetically modified mice were used to show that type I and III interferon signaling is required for the inflammatory responses. We also show that the hACE2-lentivirus mouse model can be used to test vaccines. Overall this paper demonstrates that our hACE2-lentivirus system has multiple applications in SARS-CoV-2 and COVID-19 research.

Details

ISSN :
15537374
Volume :
17
Database :
OpenAIRE
Journal :
PLOS Pathogens
Accession number :
edsair.doi.dedup.....bf064db08532229613add382edf0d01a