Back to Search Start Over

Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery

Authors :
Ruiliang Pu
Susan S. Bell
Source :
IGARSS
Publication Year :
2016
Publisher :
IEEE, 2016.

Abstract

Seagrass habitats in subtidal coastal waters provide a variety of ecosystem functions and services and there is an increasing need to acquire information on spatial and temporal dynamics of this resource. Here, we explored the capability of IKONOS (IKO) data of high resolution (4 m) for mapping seagrass cover [submerged aquatic vegetation (%SAV) cover] along the mid-western coast of Florida, USA. We also compared seagrass maps produced with IKO data with that obtained using the Landsat TM sensor with lower resolution (30 m). Both IKO and TM data, collected in October 2009, were preprocessed to calculate water depth invariant bands to normalize the effect of varying depth on bottom spectra recorded by the two satellite sensors and further the textural information was extracted from IKO data. Our results demonstrate that the high resolution IKO sensor produced a higher accuracy than the TM sensor in a three-class % SAV cover classification. Of note is that the OA of %SAV cover mapping at our study area created with IKO data was 5–20% higher than that from other studies published. We also examined the spatial distribution of seagrass over a spatial range of 4–240 m using the Ripley’s K function [L(d)] and IKO data that represented four different grain sizes [4 m (one IKO pixel), 8 m (2 × 2 IKO pixels), 12 m (3 × 3 IKO pixels), and 16 m (4 × 4 IKO pixels)] from moderate-dense seagrass cover along a set of six transects. The Ripley’s K metric repeatedly indicated that seagrass cover representing 4 m × 4 m pixels displayed a dispersed (or slightly dispersed) pattern over distances of

Details

Database :
OpenAIRE
Journal :
2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
Accession number :
edsair.doi.dedup.....bf3514b6b2162b1c494201b7dc0c8c2d
Full Text :
https://doi.org/10.1109/igarss.2016.7730998