Back to Search Start Over

Commentary: Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates

Authors :
Paul Balmer
Annaliesa S. Anderson
Robert G. K. Donald
Jamie Findlow
Paul A. Liberator
Source :
Frontiers in Microbiology, Vol 11 (2020), Frontiers in Microbiology
Publication Year :
2020
Publisher :
Frontiers Media S.A., 2020.

Abstract

Meningococcal lipoprotein, Factor H binding protein (FHbp), is the sole antigen of the Trumenba vaccine (Pfizer) and one of four antigens of the Bexsero vaccine (GSK) targeting Neisseria meningitidis serogroup B isolates. Lipidation of FHbp is assumed to occur for all isolates. We show in the majority of a collection of United Kingdom isolates (1742/1895) non-synonymous single nucleotide polymorphisms (SNPs) in the signal peptide (SP) of FHbp. A single SNP, common to all, alters a polar amino acid that abolishes processing: lipidation and SP cleavage. Whilst some of the FHbp precursor is retained in the cytoplasm due to reduced binding to SecA, remarkably some is translocated and further surface-localized by Slam. Thus we show Slam is not lipoprotein-specific. In a panel of isolates tested, the overall reduced surface localization of the precursor FHbp, compared to isolates with an intact SP, corresponded with decreased susceptibility to antibody-mediated killing. Our findings shed new light on the canonical pathway for lipoprotein processing and translocation of important relevance for lipoprotein-based vaccines in development and in particular for Trumenba.

Details

Language :
English
Volume :
11
Database :
OpenAIRE
Journal :
Frontiers in Microbiology
Accession number :
edsair.doi.dedup.....bf4851ae5950354a7fd890500a0edb62