Back to Search Start Over

CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy

Authors :
Ahmed Thamer
Jan C. Peeken
Armin Ott
Michael Bernhofer
Burkhard Rost
Nina A. Mayr
Fridtjof Nüsslin
Daniela Pfeiffer
Stephanie E. Combs
Matthew B. Spraker
Mohammed A. Shouman
Michal Devecka
Matthew J. Nyflot
Source :
Radiother. Oncol. 135, 187-196 (2019)
Publication Year :
2018

Abstract

Purpose In soft tissue sarcoma (STS) patients systemic progression and survival remain comparably low despite low local recurrence rates. In this work, we investigated whether quantitative imaging features (“radiomics”) of radiotherapy planning CT-scans carry a prognostic value for pre-therapeutic risk assessment. Methods CT-scans, tumor grade, and clinical information were collected from three independent retrospective cohorts of 83 (TUM), 87 (UW) and 51 (McGill) STS patients, respectively. After manual segmentation and preprocessing, 1358 radiomic features were extracted. Feature reduction and machine learning modeling for the prediction of grading, overall survival (OS), distant (DPFS) and local (LPFS) progression free survival were performed followed by external validation. Results Radiomic models were able to differentiate grade 3 from non-grade 3 STS (area under the receiver operator characteristic curve (AUC): 0.64). The Radiomic models were able to predict OS (C-index: 0.73), DPFS (C-index: 0.68) and LPFS (C-index: 0.77) in the validation cohort. A combined clinical-radiomics model showed the best prediction for OS (C-index: 0.76). The radiomic scores were significantly associated in univariate and multivariate cox regression and allowed for significant risk stratification for all three endpoints. Conclusion This is the first report demonstrating a prognostic potential and tumor grading differentiation by CT-based radiomics.

Details

ISSN :
18790887
Volume :
135
Database :
OpenAIRE
Journal :
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Accession number :
edsair.doi.dedup.....bffefde47894b89c4cf0cbe5b7fa7650