Back to Search Start Over

Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse

Authors :
Trygve E. Bakken
Nikolas L. Jorstad
Qiwen Hu
Blue B. Lake
Wei Tian
Brian E. Kalmbach
Megan Crow
Rebecca D. Hodge
Fenna M. Krienen
Staci A. Sorensen
Jeroen Eggermont
Zizhen Yao
Brian D. Aevermann
Andrew I. Aldridge
Anna Bartlett
Darren Bertagnolli
Tamara Casper
Rosa G. Castanon
Kirsten Crichton
Tanya L. Daigle
Rachel Dalley
Nick Dee
Nikolai Dembrow
Dinh Diep
Song-Lin Ding
Weixiu Dong
Rongxin Fang
Stephan Fischer
Melissa Goldman
Jeff Goldy
Lucas T. Graybuck
Brian R. Herb
Xiaomeng Hou
Jayaram Kancherla
Matthew Kroll
Kanan Lathia
Baldur van Lew
Yang Eric Li
Christine S. Liu
Hanqing Liu
Jacinta D. Lucero
Anup Mahurkar
Delissa McMillen
Jeremy A. Miller
Marmar Moussa
Joseph R. Nery
Philip R. Nicovich
Joshua Orvis
Julia K. Osteen
Scott Owen
Carter R. Palmer
Thanh Pham
Nongluk Plongthongkum
Olivier Poirion
Nora M. Reed
Christine Rimorin
Angeline Rivkin
William J. Romanow
Adriana E. Sedeño-Cortés
Kimberly Siletti
Saroja Somasundaram
Josef Sulc
Michael Tieu
Amy Torkelson
Herman Tung
Xinxin Wang
Fangming Xie
Anna Marie Yanny
Renee Zhang
Seth A. Ament
M. Margarita Behrens
Hector Corrada Bravo
Jerold Chun
Alexander Dobin
Jesse Gillis
Ronna Hertzano
Patrick R. Hof
Thomas Höllt
Gregory D. Horwitz
C. Dirk Keene
Peter V. Kharchenko
Andrew L. Ko
Boudewijn P. Lelieveldt
Chongyuan Luo
Eran A. Mukamel
Sebastian Preissl
Aviv Regev
Bing Ren
Richard H. Scheuermann
Kimberly Smith
William J. Spain
Owen R. White
Christof Koch
Michael Hawrylycz
Bosiljka Tasic
Evan Z. Macosko
Steven A. McCarroll
Jonathan T. Ting
Hongkui Zeng
Kun Zhang
Guoping Feng
Joseph R. Ecker
Sten Linnarsson
Ed S. Lein
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

The primary motor cortex (M1) is essential for voluntary fine motor control and is functionally conserved across mammals. Using high-throughput transcriptomic and epigenomic profiling of over 450,000 single nuclei in human, marmoset monkey, and mouse, we demonstrate a broadly conserved cellular makeup of this region, whose similarity mirrors evolutionary distance and is consistent between the transcriptome and epigenome. The core conserved molecular identity of neuronal and non-neuronal types allowed the generation of a cross-species consensus cell type classification and inference of conserved cell type properties across species. Despite overall conservation, many species specializations were apparent, including differences in cell type proportions, gene expression, DNA methylation, and chromatin state. Few cell type marker genes were conserved across species, providing a short list of candidate genes and regulatory mechanisms responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allowed the Patch-seq identification of layer 5 (L5) corticospinal Betz cells in non-human primate and human and characterization of their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....c006cd91043481f7aee36762cca12127
Full Text :
https://doi.org/10.1101/2020.03.31.016972