Back to Search Start Over

Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models

Authors :
Philippe Bousquet
Martin Karlson
Marielle Saunois
David Bastviken
Patrick M. Crill
Magnus Gålfalk
Linköping University (LIU)
Stockholm University
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Modélisation INVerse pour les mesures atmosphériques et SATellitaires (SATINV)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Remote Sensing of Environment, Remote Sensing of Environment, Elsevier, 2019, 231, pp.111252. ⟨10.1016/j.rse.2019.111252⟩, Remote Sensing of Environment, 2019, 231, pp.111252. ⟨10.1016/j.rse.2019.111252⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The spatial extent of northern peatlands remains highly uncertain in spite of rapidly developing satellite observation datasets. This is limiting progress in the understanding of fundamental biogeochemical processes, such as the global carbon (C) cycle and climate feedback effects on C fluxes. In this study, we evaluated the capabilities of two new satellite datasets that enable regional scale mapping of peatland extent at high spatial resolution, including Sentinel-1 synthetic aperture radar (SAR) and the Arctic digital elevation model (ArcticDEM). Terrain indices and temporal features derived from these datasets provided input to Random Forest models for delineating four main land cover classes (forest, open upland, water and peatland) in an area in northern Sweden consisting of both lowland and mountainous terrain. The contribution of ArcticDEM to the classification accuracy was assessed by comparing the results with those derived when a high quality LiDAR based DEM (LiDEM) was used as alternative model input. This study shows that multi-seasonal SAR alone can produce reasonable classification results in terms of overall accuracy (OA; 81.6%), but also that it has limitations. The inclusion of terrain indices improved classification performance substantially. OA increased to 87.5% and 90.9% when terrain indices derived from ArcticDEM and LiDEM were included, respectively. The largest increase in accuracy was achieved for the peatland class, which suggests that terrain indices do have the ability to capture the features in the geographic context that aid the discrimination of peatland from other land cover classes. The relatively small difference in classification accuracy between LiDEM and ArcticDEM is encouraging since the latter provides circumpolar coverage. Thus, the combination of Sentinel-1 time series and terrain indices derived from ArcticDEM presents opportunities for substantially improving regional estimates of peatland extent at high latitudes. Funding Agencies|Swedish Research Council VRSwedish Research Council [VR 2012-48]; IZOMET project [VR 2014-6584]; Swedish Research Council for Sustainable Development (Formas)Swedish Research Council Formas [2018-00570, 2018-01794]

Details

Language :
English
ISSN :
00344257 and 18790704
Database :
OpenAIRE
Journal :
Remote Sensing of Environment, Remote Sensing of Environment, Elsevier, 2019, 231, pp.111252. ⟨10.1016/j.rse.2019.111252⟩, Remote Sensing of Environment, 2019, 231, pp.111252. ⟨10.1016/j.rse.2019.111252⟩
Accession number :
edsair.doi.dedup.....c042b2cdc3324690f75f38284a8159a5
Full Text :
https://doi.org/10.1016/j.rse.2019.111252⟩