Back to Search Start Over

The Cellulosome Paradigm in An Extreme Alkaline Environment

Authors :
Paripok Phitsuwan
Bareket Dassa
Bernard Henrissat
Edward A. Bayer
Sarah Moraïs
The Weizmann Institute of Science
Etat d'Israel
Ben-Gurion University of the Negev (BGU)
Weizmann Institute of Science [Rehovot, Israël]
Architecture et fonction des macromolécules biologiques (AFMB)
Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
the United States—Israel Binational Science Foundation (BSF grant No. 2013284), Jerusalem, Israel
the Israel Science Foundation (ISF grant no. 1349/13)
the European Union NMP.2013.1.1-2: CellulosomePlus Project number 604530. Supported by a research grant from the Yotam Project via the Sustainability and Energy Research Initiative (SAERI) at the Weizmann Institute of Science
European Project: 604530,EC:FP7:NMP,FP7-NMP-2013-SMALL-7,CELLULOSOMEPLUS(2013)
Bayer, Edward A.
Source :
Microorganisms, Microorganisms, MDPI, 2019, 7 (9), pp.347. ⟨10.3390/microorganisms7090347⟩, Microorganisms, 2019, 7 (9), pp.347. ⟨10.3390/microorganisms7090347⟩, Microorganisms, Vol 7, Iss 9, p 347 (2019), Volume 7, Issue 9, Microorganisms 9 (7), . (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Rapid decomposition of plant biomass in soda lakes is associated with microbial activity of anaerobic cellulose-degrading communities. The alkaliphilic bacterium, Clostridium alkalicellulosi, is the single known isolate from a soda lake that demonstrates cellulolytic activity. This microorganism secretes cellulolytic enzymes that degrade cellulose under anaerobic and alkaliphilic conditions. A previous study indicated that the protein fraction of cellulose-grown cultures showed similarities in composition and size to known components of the archetypical cellulosome Clostridium thermocellum. Bioinformatic analysis of the C. alkalicellulosi draft genome sequence revealed 44 cohesins, organized into 22 different scaffoldins, and 142 dockerin-containing proteins. The modular organization of the scaffoldins shared similarities to those of C. thermocellum and Acetivibrio cellulolyticus, whereas some exhibited unconventional arrangements containing peptidases and oxidative enzymes. The binding interactions among cohesins and dockerins assessed by ELISA, revealed a complex network of cellulosome assemblies and suggested both cell-associated and cell-free systems. Based on these interactions, C. alkalicellulosi cellulosomal systems have the genetic potential to create elaborate complexes, which could integrate up to 105 enzymatic subunits. The alkalistable C. alkalicellulosi cellulosomal systems and their enzymes would be amenable to biotechnological processes, such as treatment of lignocellulosic biomass following prior alkaline pretreatment.

Details

Language :
English
ISSN :
20762607
Database :
OpenAIRE
Journal :
Microorganisms, Microorganisms, MDPI, 2019, 7 (9), pp.347. ⟨10.3390/microorganisms7090347⟩, Microorganisms, 2019, 7 (9), pp.347. ⟨10.3390/microorganisms7090347⟩, Microorganisms, Vol 7, Iss 9, p 347 (2019), Volume 7, Issue 9, Microorganisms 9 (7), . (2019)
Accession number :
edsair.doi.dedup.....c06e24222baa627eb8edca9891f7fea0
Full Text :
https://doi.org/10.3390/microorganisms7090347⟩