Back to Search
Start Over
The Mystery of Red Blood Cells Extracellular Vesicles in Sleep Apnea with Metabolic Dysfunction
- Source :
- International Journal of Molecular Sciences, International Journal of Molecular Sciences, Vol 22, Iss 4301, p 4301 (2021)
- Publication Year :
- 2021
-
Abstract
- Sleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases. In addition, OSA may lead to decreased blood oxygenation and fragmentation of the sleep cycle. The formation of free radicals or reactive oxygen species (ROS) can emerge and react with nitric oxide (NO) to produce peroxynitrite, thereby diminishing the bioavailability of NO. Hypoxia, the hallmark of OSA, refers to a decline of tissue oxygen saturation and affects several types of cells, playing cell-to-cell communication a vital role in the outcome of this interplay. Red blood cells (RBCs) are considered transporters of oxygen and nutrients to the tissues, and these RBCs are important interorgan communication systems with additional functions, including participation in the control of systemic NO metabolism, redox regulation, blood rheology, and viscosity. RBCs have been shown to induce endothelial dysfunction and increase cardiac injury. The mechanistic links between changes of RBC functional properties and cardiovascular are largely unknown. Extracellular vesicles (EVs) are secreted by most cell types and released in biological fluids both under physiological and pathological conditions. EVs are involved in intercellular communication by transferring complex cargoes including proteins, lipids, and nucleic acids from donor cells to recipient cells. Advancing our knowledge about mechanisms of RBC-EVs formation and their pathophysiological relevance may help to shed light on circulating EVs and to translate their application to clinical practice. We will focus on the potential use of RBC-EVs as valuable diagnostic and prognostic biomarkers and state-specific cargoes, and possibilities as therapeutic vehicles for drug and gene delivery. The use of RBC-EVs as a precision medicine for the diagnosis and treatment of the patient with sleep disorder will improve the prognosis and the quality of life in patients with cardiovascular disease (CVD).
- Subjects :
- 0301 basic medicine
Cell type
Erythrocytes
QH301-705.5
Disease
Review
exosomes
030204 cardiovascular system & hematology
Bioinformatics
Catalysis
Inorganic Chemistry
03 medical and health sciences
Extracellular Vesicles
0302 clinical medicine
Metabolic Diseases
medicine
Humans
Physical and Theoretical Chemistry
Endothelial dysfunction
Biology (General)
Molecular Biology
QD1-999
Spectroscopy
Sleep disorder
Sleep Apnea, Obstructive
therapy
metabolic dysfunction
business.industry
Organic Chemistry
Sleep apnea
General Medicine
Hypoxia (medical)
medicine.disease
Microvesicles
Computer Science Applications
Obstructive sleep apnea
Chemistry
RBCs
clinical application
030104 developmental biology
sleep disordered
medicine.symptom
extracellular vesicles (EVs)
business
red blood cells
Subjects
Details
- ISSN :
- 14220067
- Volume :
- 22
- Issue :
- 9
- Database :
- OpenAIRE
- Journal :
- International journal of molecular sciences
- Accession number :
- edsair.doi.dedup.....c1072656c576fb3d7ecc9552b7cb434b