Back to Search Start Over

Off-line Robustness Improvement of a Predictive Controller Using a Novel Tuning Approach Based on Artificial Neural Network

Authors :
Nicolas Langlois
Madjid Haddad
Houssam Moumouh
Normandie Université (NU)
SEGULA Technologies [Trappes]
Segula Technologies [France]
Pôle Automatique et Systèmes
Institut de Recherche en Systèmes Electroniques Embarqués (IRSEEM)
Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)-École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC)-Université de Rouen Normandie (UNIROUEN)
Normandie Université (NU)-Normandie Université (NU)-École Supérieure d’Ingénieurs en Génie Électrique (ESIGELEC)
Source :
2020 IEEE 16th International Conference on Control & Automation (ICCA), 2020 IEEE 16th International Conference on Control & Automation (ICCA), Oct 2020, Singapore, Singapore. pp.797-802, ⟨10.1109/ICCA51439.2020.9264476⟩, ICCA
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; A successful implementation of Model Predictive Control (MPC) requires appropriately tuned parameters. In This paper an Artificial Neural Network (ANN) based approach is presented. To build the data learning base of the ANN, we adopted the Particle Swarm Optimisation (PSO) method, and we used an Online Sequential Extreme-Learning-Machine (OS-ELM) algorithm to learn the ANN. The objective of this work is to to ensure robustness of the closed-loop system against neglecting dynamics, disturbances and sensor noises, and also show that good tuning of MPC parameters allows to reach closed-loop stability without using robustification approaches in addition to MPC. The effectiveness of our approach has been emphasized by comparing the obtained performances to Generalized Predictive Control (GPC) approach without robustification approach, and also to a robustified (GPC) using Youla parametrisation in the presence of disturbances.

Details

Language :
English
Database :
OpenAIRE
Journal :
2020 IEEE 16th International Conference on Control & Automation (ICCA), 2020 IEEE 16th International Conference on Control & Automation (ICCA), Oct 2020, Singapore, Singapore. pp.797-802, ⟨10.1109/ICCA51439.2020.9264476⟩, ICCA
Accession number :
edsair.doi.dedup.....c10fc36d824dd378e0e514058c861704