Back to Search Start Over

Assessment of Droplet Breakup Models for Spray Flow Simulations

Authors :
C. Sula
Holger Grosshans
Miltiadis Papalexandris
UCL - SST/IMMC/TFL - Thermodynamics and fluid mechanics
Source :
Flow, Turbulence and Combustion, Vol. 105, no.3, p. 889-914 (2020)
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

In this paper we examine droplet behavior and macroscopic atomization characteristics of a non-reactive liquid spray via a series of large-eddy simulations. In our numerical study we examine three popular models for spray atomization, namely, the Taylor analogy breakup (TAB), Reitz–Diwakar and Pilch–Erdman models, and compare their predictions against available experimental data. According to our simulations, and for the flow conditions considered herein, the TAB model exhibits a slightly better performance than the other two models do. Further, since the TAB model is known to underestimate the effect of disruptive drag forces, we present a modification to it and assess its predictive capacity. More specifically, according to the numerical test presented herein, our modification has the potential to improve the accuracy in the numerical computation of important global quantities of the spray, such as the liquid and vapor penetration distances.

Details

Language :
English
Database :
OpenAIRE
Journal :
Flow, Turbulence and Combustion, Vol. 105, no.3, p. 889-914 (2020)
Accession number :
edsair.doi.dedup.....c1246f4060711bf45ea29d3cd8b74841