Back to Search Start Over

Worst-case optimal exploration of terrains with obstacles

Authors :
Arnaud Labourel
Jurek Czyzowicz
David Ilcinkas
Andrzej Pelc
Département d'Informatique et d'Ingénierie (DII)
Université du Québec en Outaouais (UQO)
Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE)
Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Combinatoire et Algorithmique
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'informatique Fondamentale de Marseille (LIF)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Source :
Information and Computation, Information and Computation, 2013, 225, pp.16-28. ⟨10.1016/j.ic.2013.02.001⟩, Information and Computation, Elsevier, 2013, 225, pp.16-28. ⟨10.1016/j.ic.2013.02.001⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; A mobile robot represented by a point moving in the plane has to explore an unknown flat terrain with impassable obstacles. Both the terrain and the obstacles are modeled as arbitrary polygons. We consider two scenarios: the unlimited vision, when the robot situated at a point p of the terrain explores (sees) all points q of the terrain for which the segment pq belongs to the terrain, and the limited vision, when we require additionally that the distance between p and q is at most 1. All points of the terrain (except obstacles) have to be explored and the performance of an exploration algorithm, called its complexity, is measured by the length of the trajectory of the robot. For unlimited vision we show an exploration algorithm with complexity View the MathML source, where P is the total perimeter of the terrain (including perimeters of obstacles), D is the diameter of the convex hull of the terrain, and k is the number of obstacles. We do not assume knowledge of these parameters. We also prove a matching lower bound showing that the above complexity is optimal, even if the terrain is known to the robot. For limited vision we show exploration algorithms with complexity View the MathML source, where A is the area of the terrain (excluding obstacles). Our algorithms work either for arbitrary terrains (if one of the parameters A or k is known) or for c-fat terrains, where c is any constant (unknown to the robot) and no additional knowledge is assumed. (A terrain T with obstacles is c-fat if R/r⩽c, where R is the radius of the smallest disc containing T and r is the radius of the largest disc contained in T.) We also prove a matching lower bound View the MathML source on the complexity of exploration for limited vision, even if the terrain is known to the robot.

Details

Language :
English
ISSN :
08905401 and 10902651
Database :
OpenAIRE
Journal :
Information and Computation, Information and Computation, 2013, 225, pp.16-28. ⟨10.1016/j.ic.2013.02.001⟩, Information and Computation, Elsevier, 2013, 225, pp.16-28. ⟨10.1016/j.ic.2013.02.001⟩
Accession number :
edsair.doi.dedup.....c14147d573f81e20500789d9e41f246d