Back to Search
Start Over
Evolution of porous dust grains in protoplanetary discs – I. Growing grains
- Source :
- Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2020, ⟨10.1093/mnras/staa382⟩, Monthly Notices of the Royal Astronomical Society, 2020, ⟨10.1093/mnras/staa382⟩
- Publication Year :
- 2020
- Publisher :
- Oxford University Press (OUP), 2020.
-
Abstract
- One of the main problems in planet formation, hampering the growth of small dust to planetesimals, is the so-called radial-drift barrier. Pebbles of cm to dm sizes are thought to drift radially across protoplanetary discs faster than they can grow to larger sizes, and thus to be lost to the star. To overcome this barrier, drift has to be slowed down or stopped, or growth needs to be sped up. In this paper, we investigate the role of porosity on both drift and growth. We have developed a model for porosity evolution during grain growth and applied it to numerical simulations of protoplanetary discs. We find that growth is faster for porous grains, enabling them to transition to the Stokes drag regime, decouple from the gas, and survive the radial-drift barrier. Direct formation of small planetesimals from porous dust is possible over large areas of the disc.<br />MNRAS 493, 1788 (2020). 13 pages, 13 figures. Correction of a typo in the algorithm of Appendix A4
- Subjects :
- Earth and Planetary Astrophysics (astro-ph.EP)
Physics
Planetesimal
010504 meteorology & atmospheric sciences
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics
[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]
01 natural sciences
Grain growth
symbols.namesake
Astrophysics - Solar and Stellar Astrophysics
Space and Planetary Science
Planet
Stokes' law
0103 physical sciences
symbols
Astrophysics::Earth and Planetary Astrophysics
Porosity
010303 astronomy & astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
Astrophysics::Galaxy Astrophysics
Astrophysics - Earth and Planetary Astrophysics
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 13652966 and 00358711
- Volume :
- 493
- Database :
- OpenAIRE
- Journal :
- Monthly Notices of the Royal Astronomical Society
- Accession number :
- edsair.doi.dedup.....c1618b99d6c20b5e84c7a893ece60004
- Full Text :
- https://doi.org/10.1093/mnras/staa382