Back to Search Start Over

Evolution of porous dust grains in protoplanetary discs – I. Growing grains

Authors :
Anthony J. L. Garcia
Jean-François Gonzalez
Centre de Recherche Astrophysique de Lyon (CRAL)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
ANR-16-CE31-0013,PLANET-FORMING-DISKS,De meilleurs modèles pour de meilleures données(2016)
ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Monthly Notices of the Royal Astronomical Society, Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2020, ⟨10.1093/mnras/staa382⟩, Monthly Notices of the Royal Astronomical Society, 2020, ⟨10.1093/mnras/staa382⟩
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

One of the main problems in planet formation, hampering the growth of small dust to planetesimals, is the so-called radial-drift barrier. Pebbles of cm to dm sizes are thought to drift radially across protoplanetary discs faster than they can grow to larger sizes, and thus to be lost to the star. To overcome this barrier, drift has to be slowed down or stopped, or growth needs to be sped up. In this paper, we investigate the role of porosity on both drift and growth. We have developed a model for porosity evolution during grain growth and applied it to numerical simulations of protoplanetary discs. We find that growth is faster for porous grains, enabling them to transition to the Stokes drag regime, decouple from the gas, and survive the radial-drift barrier. Direct formation of small planetesimals from porous dust is possible over large areas of the disc.<br />MNRAS 493, 1788 (2020). 13 pages, 13 figures. Correction of a typo in the algorithm of Appendix A4

Details

ISSN :
13652966 and 00358711
Volume :
493
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society
Accession number :
edsair.doi.dedup.....c1618b99d6c20b5e84c7a893ece60004
Full Text :
https://doi.org/10.1093/mnras/staa382