Back to Search
Start Over
Metal-Organic-Framework FeBDC-Derived Fe
- Source :
- Sensors (Basel, Switzerland), Sensors, Volume 20, Issue 17, Sensors, Vol 20, Iss 4891, p 4891 (2020)
- Publication Year :
- 2020
-
Abstract
- Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors. In this research, we successfully fabricate Metal-Organic Framework (MOF) FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. FeBDC synthesis was carried out using the solvothermal method. FeCl2.4H2O and Benzene-1,4-dicarboxylic acid (H2BDC) are used as precursors to form FeBDC. The materials were further characterized utilizing X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The resulting MOF yields good crystallinity and micro-rod like morphology. Electrochemical properties were tested using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) with a 0.1 M of Phosphate Buffer Saline (PBS pH 7.4) solution as the supporting electrolyte. The measurement results show the reduction and oxidation peaks in the CV curve of FeBDC, as well as Fe3O4. Pyrolysis of FeBDC to Fe3O4 increases the peak of oxidation and reduction currents. The Fe3O4 sample obtained has a sensitivity of 4.67 &micro<br />A mM&minus<br />1.cm&minus<br />2, a linear range between 0.0 to 9.0 mM, and a glucose detection limit of 15.70 &micro<br />M.
- Subjects :
- Materials science
Supporting electrolyte
Inorganic chemistry
Infrared spectroscopy
non-enzymatic glucose
02 engineering and technology
Biosensing Techniques
lcsh:Chemical technology
010402 general chemistry
Electrochemistry
01 natural sciences
Biochemistry
Article
Fe3O4
Analytical Chemistry
Nanomaterials
Limit of Detection
lcsh:TP1-1185
Electrical and Electronic Engineering
Fourier transform infrared spectroscopy
Instrumentation
Electrodes
Metal-Organic Frameworks
electrochemical
Electrochemical Techniques
021001 nanoscience & nanotechnology
Atomic and Molecular Physics, and Optics
FeBDC
0104 chemical sciences
Glucose
Linear range
Differential pulse voltammetry
Cyclic voltammetry
0210 nano-technology
Subjects
Details
- ISSN :
- 14248220
- Volume :
- 20
- Issue :
- 17
- Database :
- OpenAIRE
- Journal :
- Sensors (Basel, Switzerland)
- Accession number :
- edsair.doi.dedup.....c17fcd85179c9f5420d6463fcf38b1de