Back to Search
Start Over
Embedding spheres in knot traces
- Source :
- Compositio Mathematica, Compositio Mathematica, 2021, Vol.157(10), pp.2242-2279 [Peer Reviewed Journal], Compositio Mathematica, 157 (10)
- Publication Year :
- 2021
-
Abstract
- The trace of the -framed surgery on a knot in is a 4-manifold homotopy equivalent to the 2-sphere. We characterise when a generator of the second homotopy group of such a manifold can be realised by a locally flat embedded -sphere whose complement has abelian fundamental group. Our characterisation is in terms of classical and computable -dimensional knot invariants. For each, this provides conditions that imply a knot is topologically -shake slice, directly analogous to the result of Freedman and Quinn that a knot with trivial Alexander polynomial is topologically slice.<br />Compositio Mathematica, 157 (10)<br />ISSN:0010-437X<br />ISSN:1570-5846
- Subjects :
- Pure mathematics
Homotopy group
Fundamental group
Algebra and Number Theory
010308 nuclear & particles physics
Homotopy
010102 general mathematics
Geometric Topology (math.GT)
Alexander polynomial
01 natural sciences
Mathematics::Algebraic Topology
Mathematics::Geometric Topology
Manifold
Mathematics - Geometric Topology
Arf invariant
0103 physical sciences
FOS: Mathematics
0101 mathematics
Abelian group
Knot (mathematics)
Mathematics
57K40, 57K10, 57N35, 57N70, 57R67
Subjects
Details
- Language :
- English
- ISSN :
- 0010437X and 15705846
- Database :
- OpenAIRE
- Journal :
- Compositio Mathematica, Compositio Mathematica, 2021, Vol.157(10), pp.2242-2279 [Peer Reviewed Journal], Compositio Mathematica, 157 (10)
- Accession number :
- edsair.doi.dedup.....c1b789d9aa3d7d4ff47f47f6f511f83a