Back to Search
Start Over
Post‐ejaculatory modifications to sperm (PEMS)
- Source :
- Biol Rev Camb Philos Soc
- Publication Year :
- 2019
- Publisher :
- Wiley, 2019.
-
Abstract
- Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm ‘capacitation’, was discovered nearly seven decades ago and opened a window into the complexities of sperm–female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca(2+) levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm–female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
- Subjects :
- Male
0106 biological sciences
0303 health sciences
Hyperactivation
Acrosome Reaction
Acrosome reaction
Context (language use)
Biology
Spermatozoa
010603 evolutionary biology
01 natural sciences
Sperm
Article
General Biochemistry, Genetics and Molecular Biology
Internal fertilization
03 medical and health sciences
Capacitation
Evolutionary biology
Animals
Ejaculation
General Agricultural and Biological Sciences
Sperm Capacitation
Sperm competition
030304 developmental biology
Sperm plasma membrane
Subjects
Details
- ISSN :
- 1469185X and 14647931
- Volume :
- 95
- Database :
- OpenAIRE
- Journal :
- Biological Reviews
- Accession number :
- edsair.doi.dedup.....c1ce6913d8bc45cbec2721e2c1997aa8
- Full Text :
- https://doi.org/10.1111/brv.12569