Back to Search Start Over

Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station

Authors :
Debmalya Barh
V. Azevedo
Madangchanok Imchen
Olga Kukharenko
Oleg N. Reva
Rodrigo Bentes Kato
Ranjith Kumavath
Daniel S. Carvalho
Iryna Orlovska
Sandeep Tiwari
Natalia Kozyrovska
Aristóteles Góes-Neto
Bertram Brenig
Jean-Pierre de Vera
Olga Podolich
Source :
Environmental microbiologyReferences. 23(7)
Publication Year :
2021

Abstract

Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.

Details

ISSN :
14622920
Volume :
23
Issue :
7
Database :
OpenAIRE
Journal :
Environmental microbiologyReferences
Accession number :
edsair.doi.dedup.....c20370097e742126de5efd044982daf3