Back to Search Start Over

On the inverse Cauchy problem for linear ordinary differential equations

Authors :
Chartouny, Maya
Cluzeau, Thomas
Quadrat, Alban
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
OUtils de Résolution Algébriques pour la Géométrie et ses ApplicatioNs (OURAGAN)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
XLIM (XLIM)
Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)
Wiley
Source :
GAMM 2021-92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, GAMM 2021-92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics, Mar 2021, Kassel, Germany. ⟨10.1002/pamm.202100214⟩
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

International audience; The Cauchy problem characterizes the solutions of a linear ordinary differential equation that satisfies initial conditions. In this paper, we investigate the converse problem, namely, given a function that is known to satisfy a linear ordinary differential equation of a fixed order, determine the coefficients of the ordinary differential equation and the initial conditions. The techniques used to investigate the inverse Cauchy problem come from the algebraic estimation problem introduced by Fliess and Sira-Ramírez. From the perfect observation of the solution, i.e., without external perturbation and noise corrupting it, the initial value problem can be explicitly reconstructed using only iterative indefinite integrals of the solution.

Details

ISSN :
16177061
Volume :
21
Database :
OpenAIRE
Journal :
PAMM
Accession number :
edsair.doi.dedup.....c2fee07a45c5119cfcdcb479d040964c
Full Text :
https://doi.org/10.1002/pamm.202100214