Back to Search Start Over

Gradient Scan Gibbs Sampler: An Efficient Algorithm for High-Dimensional Gaussian Distributions

Authors :
Olivier Féron
Jean-François Giovannelli
Franois Orieux
Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie ( EDF R&D OSIRIS )
EDF R&D ( EDF R&D )
EDF ( EDF ) -EDF ( EDF )
Laboratoire des signaux et systèmes ( L2S )
Université Paris-Sud - Paris 11 ( UP11 ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS )
Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie (EDF R&D OSIRIS)
EDF R&D (EDF R&D)
EDF (EDF)-EDF (EDF)
Laboratoire des signaux et systèmes (L2S)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Source :
IEEE Journal of Selected Topics in Signal Processing, IEEE Journal of Selected Topics in Signal Processing, IEEE, 2016, 10 (2), pp.343-352. 〈10.1109/JSTSP.2015.2510961〉, IEEE Journal of Selected Topics in Signal Processing, IEEE, 2016, 10 (2), pp.343-352. ⟨10.1109/JSTSP.2015.2510961⟩
Publication Year :
2016
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2016.

Abstract

This paper deals with Gibbs samplers that include high dimensional conditional Gaussian distributions. It proposes an efficient algorithm that avoids the high dimensional Gaussian sampling and relies on a random excursion along a small set of directions. The algorithm is proved to converge, i.e. the drawn samples are asymptotically distributed according to the target distribution. Our main motivation is in inverse problems related to general linear observation models and their solution in a hierarchical Bayesian framework implemented through sampling algorithms. It finds direct applications in semi-blind/unsupervised methods as well as in some non-Gaussian methods. The paper provides an illustration focused on the unsupervised estimation for super-resolution methods.<br />18 pages

Details

ISSN :
19410484 and 19324553
Volume :
10
Database :
OpenAIRE
Journal :
IEEE Journal of Selected Topics in Signal Processing
Accession number :
edsair.doi.dedup.....c393328ab48141def7ca42bb3df6d089
Full Text :
https://doi.org/10.1109/jstsp.2015.2510961