Back to Search Start Over

Incrementally semi-supervised classification of arthritis inflammation on a clinical dataset

Authors :
Theodore Aouad
Clementina Lopez-Medina
Charlotte Martin-Peltier
Adrien Bordner
Sisi Yang
Anna Molto
Maxime Dougados
Antoine Feydy
Hugues Talbot
OPtimisation Imagerie et Santé (OPIS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay
Hôpital Cochin [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
IEEE
Aouad, Théodore
Source :
IEEE International Conference on Image Processing 2022, IEEE International Conference on Image Processing 2022, IEEE, Oct 2022, Bordeaux, France
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; For best medical imaging application results, learning-based approaches such as deep learning necessitate specific, extensive and precise annotations. Outside well-curated public benchmarks, these are rarely available in practice, and so it becomes necessary to use less-than-perfect annotations. One way of compensating for this is the embedding of anatomical knowledge. Complementing this, there is the incremental semi-supervised learning technique, whereby a small amount of annotations can be used to derive more and superior labels.In this article, we illustrate this approach on a deep learning system to help radiologists and rheumatologists finely and interactively assess MRI scans of the sacro-iliac joint in order to correctly diagnose Axial Spondyloarthritis. Our model is trained initially on a relatively small set of images with promising results, on par with expert opinion and generalizable to new datasets.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE International Conference on Image Processing 2022, IEEE International Conference on Image Processing 2022, IEEE, Oct 2022, Bordeaux, France
Accession number :
edsair.doi.dedup.....c39e7a24bbfd4f24a18693e84a014710