Back to Search
Start Over
Phase-Separation Kinetics in Protein–Salt Mixtures with Compositionally Tuned Interactions
- Source :
- The Journal of Physical Chemistry B. 123:1913-1919
- Publication Year :
- 2019
- Publisher :
- American Chemical Society (ACS), 2019.
-
Abstract
- Liquid-liquid phase separation (LLPS) in protein systems is relevant for many phenomena, from protein condensation diseases to subcellular organization to possible pathways toward protein crystallization. Understanding and controlling LLPS in proteins is therefore highly relevant for various areas of (biological) soft matter research. Solutions of the protein bovine serum albumin (BSA) have been shown to have a lower critical solution temperature-LLPS (LCST-LLPS) induceable by multivalent salts. Importantly, the nature of the multivalent cation used influences the LCST-LLPS in such systems. Here, we present a systematic ultrasmall-angle X-ray scattering investigation of the kinetics of LCST-LLPS of BSA in the presence of different mixtures of HoCl3 and LaCl3, resulting in different effective interprotein attraction strengths. We monitor the characteristic length scales ξ( t, Tfin) after inducing LLPS by subjecting the respective systems to temperature jumps in their liquid-liquid coexistence regions. With increasing interprotein attraction and increasing Tfin, we observe an increasing deviation from the growth law of ξ ∼ t1/3 and an increased trend toward arrest. We thus establish a multidimensional method to tune phase transitions in our systems. Our findings help shed light on general questions regarding LLPS and the tunability of its kinetics in both proteins and colloidal systems.
- Subjects :
- Phase transition
Characteristic length
Kinetics
010402 general chemistry
01 natural sciences
Phase Transition
Holmium
Colloid
X-Ray Diffraction
Lanthanum
Scattering, Small Angle
0103 physical sciences
Materials Chemistry
Animals
Transition Temperature
Soft matter
Physical and Theoretical Chemistry
Bovine serum albumin
010304 chemical physics
biology
Chemistry
Condensation
Serum Albumin, Bovine
0104 chemical sciences
Surfaces, Coatings and Films
Solutions
Chemical physics
biology.protein
Cattle
Protein crystallization
Subjects
Details
- ISSN :
- 15205207 and 15206106
- Volume :
- 123
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry B
- Accession number :
- edsair.doi.dedup.....c3a9d4aaadfd10c5319d9c0455dc51cc
- Full Text :
- https://doi.org/10.1021/acs.jpcb.8b10725