Back to Search Start Over

Refitting solutions promoted by $\ell_{12}$ sparse analysis regularization with block penalties

Authors :
DELEDALLE, Charles-Alban
PAPADAKIS, Nicolas
SALMON, Joseph
VAITER, Samuel
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Université de Montpellier (UM)
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
ANR-16-CE33-0010,GOTMI,Generalized Optimal Transport Models for Image processing(2016)
European Project: 777826,NoMADS(2018)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Papadakis, Nicolas
Generalized Optimal Transport Models for Image processing - - GOTMI2016 - ANR-16-CE33-0010 - AAPG2016 - VALID
Nonlocal Methods for Arbitrary Data Sources - NoMADS - 2018-03-01 - 2022-02-28 - 777826 - VALID
Source :
International Conference on Scale Space and Variational Methods in Computer Vision, International Conference on Scale Space and Variational Methods in Computer Vision, Jun 2019, Hofgeismar, Germany, International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'19), International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'19), Jun 2019, Hofgeismar, Germany. pp.131-143
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; In inverse problems, the use of an $\ell_{12}$ analysis regularizer induces a bias in the estimated solution. We propose a general refitting framework for removing this artifact while keeping information of interest contained in the biased solution. This is done through the use of refitting block penalties that only act on the co-support of the estimation. Based on an analysis of related works in the literature, we propose a new penalty that is well suited for refitting purposes. We also present an efficient algorithmic method to obtain the refitted solution along with the original (biased) solution for any convex refitting block penalty. Experiments illustrate the good behavior of the proposed block penalty for refitting.

Details

Language :
English
Database :
OpenAIRE
Journal :
International Conference on Scale Space and Variational Methods in Computer Vision, International Conference on Scale Space and Variational Methods in Computer Vision, Jun 2019, Hofgeismar, Germany, International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'19), International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'19), Jun 2019, Hofgeismar, Germany. pp.131-143
Accession number :
edsair.doi.dedup.....c3cc0e31b6c4d9e32ecaaf63ca49cc81